CLC number:
On-line Access: 2023-03-31
Received: 2022-11-27
Revision Accepted: 2023-01-23
Crosschecked: 2023-03-31
Cited: 0
Clicked: 218
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-1946-7252
Chen LING, Aiping LIANG, Chaolin LI, Wenhui WANG. Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis[J]. Journal of Zhejiang University Science A, 2023, 24(7): 377-386. @article{title="Coupling functional anodes with natural air-diffused cathodes enables highly efficient hydrogen peroxide electrosynthesis", %0 Journal Article TY - JOUR
功能化阳极耦合自然空气扩散阴极高效电合成过氧化氢机构:1哈尔滨工业大学(深圳),土木与环境工程学院,中国深圳,518055;2哈尔滨工业大学,环境学院,城市水资源与水环境国家重点实验室,中国哈尔滨,150090 目的:电化学合成过氧化氢(H2O2)是一种极具应用前景的分散式生产方法,但因传统的单极电合成电流效率不高,其发展受到了严重限制。本文旨在通过自组装单层膜修饰碳纤维纸制备高效二电子水氧化合成过氧化氢的阳极,同时耦合负载聚四氟乙烯/炭黑的自然空气扩散阴极,实现阴阳极同步电合成过氧化氢,从而大幅度提高其电流效率。 创新点:1.通过自组装单层膜修饰碳纤维纸制备功能化阳极高效二电子水氧化合成过氧化氢;2.耦合阳极和阴极大幅度提高电合成过氧化氢的电流效率。 方法:1.利用自组装单层膜修饰碳纤维纸制备功能化阳极,通过物化性能表征确定电极的结构特征(图1),并通过活性、选择性等指标考察电极的二电子水氧化性能(图2);2.制备负载聚四氟乙烯/炭黑的自然空气扩散阴极,并通过电化学性能表征确定最佳的物料配比(图3);3.耦合功能化阳极和自然空气扩散阴极,并通过电流效率、产率、稳定性等指标评估体系电合成过氧化氢的性能(图4和表1)。 结论:1.利用自组装单层膜修饰碳纤维纸制备高效的二电子水氧化阳极;阳极过氧化氢的选择性为62.1%,产率为12.6 μmol/(min·cm2)。2.确定自然空气扩散阴极上聚四氟乙烯与炭黑的比例为0.6,并将其与功能化阳极耦合同步电合成过氧化氢,所得电流效率高达152.9%,且产率达到38 μmol/min。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ArbabS, ZeinolebadiA, 2013. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polymer Degradation and Stability, 98(12):2537-2545. ![]() [2]Campos-MartinJM, Blanco-BrievaG, FierroJLG, 2006. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 45(42):6962-6984. ![]() [3]CastilloGA, WilsonL, EfimenkoK, et al., 2016. Amidation of polyesters is slow in nonaqueous solvents: efficient amidation of poly(ethylene terephthalate) with 3-aminopropyltriethoxysilane in water for generating multifunctional surfaces. ACS Applied Materials & Interfaces, 8(51):35641-35649. ![]() [4]EdwardsJK, HutchingsGJ, 2008. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angewandte Chemie International Edition, 47(48):9192-9198. ![]() [5]FanL, BaiXW, XiaC, et al., 2022. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 13(1):2668. ![]() [6]FangCQ, WangJL, ZhangT, 2014. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent. Applied Surface Science, 321:1-9. ![]() [7]FukuK, MiyaseY, MisekiY, et al., 2016. Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect, 1(18):5721-5726. ![]() [8]FukuK, MiyaseY, MisekiY, et al., 2017. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chemistry-An Asian Journal, 12(10):1111-1119. ![]() [9]GopakumarA, RenP, ChenJH, et al., 2022. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. Journal of the American Chemical Society, 144(6):2603-2613. ![]() [10]HageR, LienkeA, 2006. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angewandte Chemie International Edition, 45(2):206-222. ![]() [11]HanGW, XuFY, ChengB, et al., 2022. Enhanced photocatalytic H2O2 production over inverse opal ZnO@polydopamine S-scheme heterojunctions. Acta Physico-Chimica Sinica, 38(7):2112037 (in Chinese). ![]() [12]KellySR, ShiXJ, BackS, et al., 2019. ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catalysis, 9(5):4593-4599. ![]() [13]KosakaK, YamadaH, ShishidaK, et al., 2001. Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products. Water Research, 35(15):3587-3594. ![]() [14]LiLJ, HuZF, YuJC, 2020. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angewandte Chemie International Edition, 59(46):20538-20544. ![]() [15]LiLJ, XuLP, ChanAWM, et al., 2022. Direct hydrogen peroxide synthesis on a Sn-doped CuWO4/Sn anode and an air-breathing cathode. Chemistry of Materials, 34(1):63-71. ![]() [16]LuZY, ChenGX, SiahrostamiS, et al., 2018. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 1(2):156-162. ![]() [17]LuoHJ, LiCL, SunX, et al., 2017. Cathodic indirect oxidation of organic pollutant paired to anodic persulfate production. Journal of Electroanalytical Chemistry, 792:110-116. ![]() [18]MaJ, ChoudhuryNA, SahaiY, 2010. A comprehensive review of direct borohydride fuel cells. Renewable and Sustainable Energy Reviews, 14(1):183-199. ![]() [19]MavrikisS, GöltzM, PerrySC, et al., 2021. Effective hydrogen peroxide production from electrochemical water oxidation. ACS Energy Letters, 6(7):2369-2377. ![]() [20]PangotraD, CsepeiLI, RothA, et al., 2022. Anodic production of hydrogen peroxide using commercial carbon materials. Applied Catalysis B: Environmental, 303:120848. ![]() [21]PapiyaF, DasS, PattanayakP, et al., 2019. The fabrication of silane modified graphene oxide supported Ni-Co bimetallic electrocatalysts: a catalytic system for superior oxygen reduction in microbial fuel cells. International Journal of Hydrogen Energy, 44(47):25874-25893. ![]() [22]ParkSY, AbroshanH, ShiXJ, et al., 2019. CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Letters, 4(1):352-357. ![]() [23]SamantaC, ChoudharyVR, 2007. Direct formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in aqueous acidic reaction medium over halide-containing Pd/SiO2 catalytic system. Catalysis Communications, 8(12):2222-2228. ![]() [24]SchwartzDK, 2001. Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry, 52:107-137. ![]() [25]ShiXJ, SiahrostamiS, LiGL, et al., 2017. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nature Communications, 8(1):701. ![]() [26]ShiXJ, ZhangYR, SiahrostamiS, et al., 2018. Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Advanced Energy Materials, 8(23):1801158. ![]() [27]ShiXJ, BackS, GillTM, et al., 2021. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem, 7(1):38-63. ![]() [28]SiahrostamiS, Verdaguer-CasadevallA, KaramadM, et al., 2013. Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 12(12):1137-1143. ![]() [29]SosaN, ChanlekN, WittayakunJ, 2020. Facile ultrasound-assisted grafting of silica gel by aminopropyltriethoxysilane for aldol condensation of furfural and acetone. Ultrasonics Sonochemistry, 62:104857. ![]() [30]TanevPT, ChibweM, PinnavaiaTJ, 1994. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 368(6469):321-323. ![]() [31]TrzcińskiK, SzkodaM, SzulcK, et al., 2019. The bismuth vanadate thin layers modified by cobalt hexacyanocobaltate as visible-light active photoanodes for photoelectrochemical water oxidation. Electrochimica Acta, 295:410-417. ![]() [32]VargaM, IzakT, VretenarV, et al., 2017. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon, 111:54-61. ![]() [33]VoTG, TaiY, ChiangCY, 2019. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Applied Catalysis B: Environmental, 243:657-666. ![]() [34]WenFC, LiSRGG, ChenY, et al., 2022. Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell. Rare Metals, 41(8):2655-2663. ![]() [35]XiaC, BackS, RingeS, et al., 2020. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nature Catalysis, 3(2):125-134. ![]() [36]YangSQ, CuiYH, LiuYY, et al., 2018. Electrochemical generation of persulfate and its performance on 4-bromophenol treatment. Separation and Purification Technology, 207:461-469. ![]() [37]ZhangQZ, ZhouMH, RenGB, et al., 2020. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nature Communications, 11(1):1731. ![]() [38]ZhongRS, QinYH, NiuDF, et al., 2013. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. Journal of Power Sources, 225:192-199. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>