CLC number:
On-line Access: 2025-01-21
Received: 2023-02-27
Revision Accepted: 2023-10-09
Crosschecked: 2025-01-21
Cited: 0
Clicked: 1601
Hui XU, Guangbin CAI, Chaoxu MU, Xin LI, Hao WEI. Segmented predictor-corrector reentry guidance based on an analytical profile[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300102 @article{title="Segmented predictor-corrector reentry guidance based on an analytical profile", %0 Journal Article TY - JOUR
基于解析剖面的分段预测校正再入制导机构:1火箭军工程大学,导弹工程学院,中国西安,710025;2天津大学,电气自动化与信息工程学院,中国天津,300072 目的:近年来,高超声速滑翔飞行器由于其全球快速到达能力和超强的机动性,在世界范围内引起了极大的关注。制导问题是高超声速滑翔飞行器应用于航空航天领域要解决的首要问题。本文主要针对再入制导问题中常用的预测校正制导方法进行改进:1.克服传统积分式预测校正计算耗时长的问题;2.改善解析式方法由于简化较多导致制导精度不理想的问题。 创新点:1.设计新的高度能量剖面进行倾侧角解析推导,为预测校正迭代环节提供良好初值。2.解析推导剩余航程,极大提高了计算效率,缩短预测校正环节计算时间。3.提出分段制导和自适应制导周期策略,进一步提升了制导精度和计算效率。4.充分的仿真实验验证了本文的方法能够快速、准确和鲁棒地获得制导指令,具有在线应用的潜力。 方法:1.建立高超声速滑翔飞行器再入运动模型,定义能量变量,对再入运动模型进行降阶。2.解析推导剩余航程与能量和倾侧角之间的解析关系式。3.选择能量阈值,分段求解倾侧角指令;在第一阶段,距离终点较远时,采用解析预测校正方法求解倾侧角;第二阶段,距离终点较近时,等距试测法进行倾侧角求解。4.提出自适应制导周期策略,灵活调整制导周期,提高制导精度。5.设置航向角偏差走廊,得到倾侧角指令符号,给出完整倾侧角指令。6.分别设置三类实验验证该方法的有效性、精确性和鲁棒性。 结论:1.本文提出的方法能够解析推导出倾侧角和计算剩余航程。2.所提方法能够有效提高再入制导指令计算效率,计算时间缩短两倍以上。3.实验结果表明,本文算法能够高效地得到精确的制导指令;蒙特卡洛实验验证了本文方法具有较好的鲁棒性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AnK, GuoZY, HuangW, et al., 2022. Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(3):188-207. ![]() [2]ChenK, LiangWC, LiuMX, et al., 2020. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(8):673-683. ![]() [3]GaoY, CaiGB, YangXG, et al., 2019a. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint. IEEE Access, 7:119246-119258. ![]() [4]GaoY, CaiGB, ZhangSX, et al., 2019b. Reentry maneuver guidance for hypersonic glide vehicles under multiple no-fly zones. Journal of Ordnance Equipment Engineering, 40(8):32-39(in Chinese). ![]() [5]GaoY, CaiGB, XuH, et al., 2020. Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection. Acta Aeronautica et Astronautica Sinica, 41(11):623703(in Chinese). ![]() [6]JoshiA, SivanK, AmmaSS, 2007. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles. Journal of Guidance, Control, and Dynamics, 30(5):1307-1318. ![]() [7]LiMM, HuJ, 2018. An approach and landing guidance design for reusable launch vehicle based on adaptive predictor-corrector technique. Aerospace Science and Technology, 75:13-23. ![]() [8]LiangZX, LiQD, RenZ, 2017. Virtual terminal-based adaptive predictor-corrector entry guidance. Journal of Aerospace Engineering, 30(4):04017013. ![]() [9]LiangZX, ZhuSY, 2021. Constrained predictor-corrector guidance via bank saturation avoidance for low L/D entry vehicles. Aerospace Science and Technology, 109:106448. ![]() [10]LuP, 2008. Predictor-corrector entry guidance for low-lifting vehicles. Journal of Guidance, Control, and Dynamics, 31(4):1067-1075. ![]() [11]LuP, 2014. Entry guidance: a unified method. Journal of Guidance, Control, and Dynamics, 37(3):713-728. ![]() [12]PanL, PengSC, XieY, et al., 2020. 3D guidance for hypersonic reentry gliders based on analytical prediction. Acta Astronautics, 167:42-51. ![]() [13]PhillipsTH, 2003. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide. Schafer Corporation for AFRL and AFSPC, Arlington, USA. ![]() [14]RizviSTUI, HeLS, XuDJ, 2015. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application. Defence Technology, 11(4):350-361. ![]() [15]ShenZL, LuP, 2003. Onboard generation of three-dimensional constrained entry trajectories. Journal of Guidance, Control, and Dynamics, 26(1):111-121. ![]() [16]WangT, ZhangHB, TangGJ, 2017a. Predictor-corrector entry guidance with waypoint and no-fly zone constraints. Acta Astronautica, 138:10-18. ![]() [17]WangT, ZhangHB, ZengL, et al., 2017b. A robust predictor-corrector entry guidance. Aerospace Science and Technology, 66:103-111. ![]() [18]WangX, GuoJ, TangSJ, et al., 2019. Time-cooperative entry guidance based on analytical profile. Acta Aeronautica et Astronautica Sinica, 40(3):322565(in Chinese). ![]() [19]XiaYQ, ShenGH, ZhouLY, et al., 2015. Mars entry guidance based on segmented guidance predictor-corrector algorithm. Control Engineering Practice, 45:79-85. ![]() [20]XuH, CaiGB, ZhangSX, 2021. Modified aerodynamic coefficient fitting models of hypersonic gliding vehicle in reentry phase. Journal of Astronautics, 42(9):1139-1149(in Chinese). ![]() [21]XuH, CaiGB, ZhangSX, et al., 2022. Hypersonic reentry trajectory optimization by using improved sparrow search algorithm and control parametrization method. Advances in Space Research, 69(6):2512-2524. ![]() [22]XueJK, ShenB, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering, 8(1):22-34. ![]() [23]XueSB, LuP, 2010. Constrained predictor-corrector entry guidance. Journal of Guidance, Control, and Dynamics, 33(4):1273-1281. ![]() [24]YongEM, QianWQ, HeKF, 2014. An adaptive predictor-corrector reentry guidance based on self-definition way-points. Aerospace Science and Technology, 39:211-221. ![]() [25]YuWB, ChenWC, JiangZG, et al., 2018. Analytical entry guidance for no-fly-zone avoidance. Aerospace Science and Technology, 72:426-442. ![]() [26]ZengL, ZhangHB, ZhengW, 2018. A three-dimensional predictor-corrector entry guidance based on reduced-order motion equations. Aerospace Science and Technology, 73:223-231. ![]() [27]ZengXF, WangJY, WangXH, 2013. Gliding guidance based on energy and analytical predictor-corrector. Systems Engineering and Electronics, 35(12):2582-2588(in Chinese). ![]() [28]ZhangHX, GongZF, CaiGB, et al., 2019. Reentry tracking control of hypersonic vehicle with complicated constraints. Journal of Ordnance Equipment Engineering, 40(1):1-6(in Chinese). ![]() [29]ZhangJL, LiuK, FanYZ, et al., 2021. A piecewise predictor-corrector re-entry guidance algorithm with no-fly zone avoidance. Journal of Astronautics, 42(1):122-131(in Chinese). ![]() [30]ZhangXY, WangGH, SongZY, et al., 2015. Hypersonic sliding target tracking in near space. Defence Technology, 11(4):370-381. ![]() [31]ZhouHY, WangXG, CuiNG, 2020. Glide guidance for reusable launch vehicles using analytical dynamics. Aerospace Science and Technology, 98:105678. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>