CLC number:
On-line Access: 2024-12-06
Received: 2023-07-02
Revision Accepted: 2024-01-23
Crosschecked: 2024-12-06
Cited: 0
Clicked: 1182
Yifan LI, Yongyong XIANG, Luojie SHI, Baisong PAN. Efficient reliability analysis via a nonlinear autoregressive multi-fidelity surrogate model and active learning[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300340 @article{title="Efficient reliability analysis via a nonlinear autoregressive multi-fidelity surrogate model and active learning", %0 Journal Article TY - JOUR
基于非线性自回归多保真代理模型和主动学习的高效可靠性分析方法机构:浙江工业大学,机械工程学院,中国杭州,310023 目的:针对现有多保真建模方法需要嵌套训练样本来捕捉数据相关性导致的计算成本增加与未充分考虑不同保真度样本之间非线性关系导致模型精度低的问题,本文提出一种结合多保真建模和主动学习的可靠性分析方法,旨在实现高效且准确的失效概率估计。 创新点:1.基于非线性自回归方案构建了一种非线性自回归多保真克里金(NAMK)模型;2.在模型更新过程中,用集成的多保真学习函数代替传统的学习函数,通过综合考虑采样成本和多保真样本之间的相关性,从多保真样本空间中选择新的采样点;3.当选择高保真样本时,使用残差模型生成嵌套的低保真样本。 方法:1.在指定的参数范围内选择初始多保真样本,并使用NAMK构建初始代理模型;2.通过集成学习函数确定新样本的位置和保真度;3.一旦选择了一个高保真样本,根据残差模型生成嵌套的低保真度样本并根据新的样本更新模型;4.使用基于相对误差估计的停止准则终止主动学习过程并输出失效概率估计结果。 结论:1.本文所提出的基于多保真建模和主动学习的可靠分析方法提高了失效概率估计的效率和精度;2.利用NAMK模型来捕捉多保真样本之间的非线性关系,有效提高了代理模型的准确性;3.考虑多保真样本的相关性和采样成本的学习函数能自适应地确定新样本的位置和保真度;4.当学习函数选择高保真样本时,通过构造残差模型生成嵌套的低保真度样本可减少低保真度模型的调用次数。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AldosaryM, WangJS, LiCF, 2018. Structural reliability and stochastic finite element methods: state-of-the-art review and evidence-based comparison. Engineering Computations, 35(6):2165-2214. [2]BichonBJ, EldredMS, SwilerLP, et al., 2008. Efficient global reliability analysis for nonlinear implicit performance functions. AIAA Journal, 46(10):2459-2468. [3]ChaudhuriA, MarquesAN, WillcoxK, 2021. mfEGRA: multifidelity efficient global reliability analysis through active learning for failure boundary location. Structural and Multidisciplinary Optimization, 64(2):797-811. [4]ChenJ, GaoY, LiuYM, 2022. Multi-fidelity data aggregation using convolutional neural networks. Computer Methods in Applied Mechanics and Engineering, 391:114490. [5]ChengJ, LiQS, 2008. Reliability analysis of structures using artificial neural network based genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 197(45-48):3742-3750. [6]CutajarK, PullinM, DamianouA, et al., 2019. Deep Gaussian processes for multi-fidelity modeling. arXiv:1903.07320. [7]EchardB, GaytonN, LemaireM, 2011. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Structural Safety, 33(2):145-154. [8]EchardB, GaytonN, LemaireM, et al., 2013. A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models. Reliability Engineering & System Safety, 111:232-240. [9]FengJW, LiuL, WuD, et al., 2019. Dynamic reliability analysis using the extended support vector regression (X-SVR). Mechanical Systems and Signal Processing, 126:368-391. [10]ForresterAIJ, SóbesterA, KeaneAJ, 2007. Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088):3251-3269. [11]ForresterAIJ, SóbesterA, KeaneAJ, 2008. Engineering Design via Surrogate Modelling: a Practical Guide. John Wiley & Sons, Hoboken, USA. [12]GavinHP, YauSC, 2008. High-order limit state functions in the response surface method for structural reliability analysis. Structural Safety, 30(2):162-179. [13]GoswamiS, GhoshS, ChakrabortyS, 2016. Reliability analysis of structures by iterative improved response surface method. Structural Safety, 60:56-66. [14]GuoMW, ManzoniA, AmendtM, et al., 2022. Multi-fidelity regression using artificial neural networks: efficient approximation of parameter-dependent output quantities. Computer Methods in Applied Mechanics and Engineering, 389:114378. [15]HeWX, ZengY, LiG, 2020. An adaptive polynomial chaos expansion for high-dimensional reliability analysis. Structural and Multidisciplinary Optimization, 62(4):2051-2067. [16]HohenbichlerM, RackwitzR, 1982. First-order concepts in system reliability. Structural Safety, 1(3):177-188. [17]HongHP, 1996. Point-estimate moment-based reliability analy [18]sis. Civil Engineering Systems, 13(4):281-294. [19]HongLX, LiHC, FuJF, 2022. A novel surrogate-model based active learning method for structural reliability analysis. Computer Methods in Applied Mechanics and Engineering, 394:114835. [20]HuC, YounBD, 2011. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Structural and Multidisciplinary Optimization, 43(3):419-442. [21]JiYX, XiaoNC, ZhanHY, 2022. High dimensional reliability analysis based on combinations of adaptive Kriging and dimension reduction technique. Quality and Reliability Engineering International, 38(5):2566-2585. [22]JonesDR, SchonlauM, WelchWJ, 1998. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455-492. [23]KaymazI, 2005. Application of Kriging method to structural reliability problems. Structural Safety, 27(2):133-151. [24]KennedyMC, O’HaganA, 2000. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1):1-13. [25]KiureghianAD, StefanoMD, 1991. Efficient algorithm for second-order reliability analysis. Journal of Engineering Mechanics, 117(12):2904-2923. [26]KrigeDG, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119-139. [27]Le GratietL, GarnierJ, 2014. Recursive co-Kriging model for design of computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification, 4(5):365-386. [28]LelièvreN, BeaurepaireP, MattrandC, et al., 2018. AK-MCSi: a Kriging-based method to deal with small failure probabilities and time-consuming models. Structural Safety, 73:1-11. [29]LiHS, CaoZJ, 2016. Matlab codes of subset simulation for reliability analysis and structural optimization. Structural and Multidisciplinary Optimization, 54(2):391-410. [30]LiMY, WangZQ, 2019. Surrogate model uncertainty quantification for reliability-based design optimization. Reliability Engineering & System Safety, 192:106432. [31]LiX, GongCL, GuLX, et al., 2018. A sequential surrogate method for reliability analysis based on radial basis function. Structural Safety, 73:42-53. [32]LiuJ, YiJX, ZhouQ, et al., 2022. A sequential multi-fidelity surrogate model-assisted contour prediction method for engineering problems with expensive simulations. Engineering with Computers, 38(1):31-49. [33]LophavenSN, NielsenHB, SøndergaardJ, 2002. DACE–a Matlab Kriging Toolbox, Version 2.0. Technical Report No. IMM-TR-2002-12, Technical University of Denmark, Kongens Lyngby, Denmark. [34]MarquesAN, LamRR, WillcoxKE, 2018. Contour location via entropy reduction leveraging multiple information sources. Proceedings of the 32nd International Conference on Neural Information Processing Systems, p.5223-5233. [35]MelchersRE, 1990. Radial importance sampling for structural reliability. Journal of Engineering Mechanics, 116(1):189-203. [36]MengXH, KarniadakisGE, 2020. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems. Journal of Computational Physics, 401:109020. [37]PapaioannouI, PapadimitriouC, StraubD, 2016. Sequential importance sampling for structural reliability analysis. Structural Safety, 62:66-75. [38]PerdikarisP, RaissiM, DamianouA, et al., 2017. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2198):20160751. [39]RajashekharMR, EllingwoodBR, 1993. A new look at the response surface approach for reliability analysis. Structural Safety, 12(3):205-220. [40]ReisenthelPH, AllenTT, 2014. Application of multifidelity expected improvement algorithms to aeroelastic design optimization. The 10th AIAA Multidisciplinary Design Optimization Conference, article 1490. [41]RenC, AouesY, LemosseD, et al., 2022. Ensemble of surrogates combining Kriging and artificial neural networks for reliability analysis with local goodness measurement. Structural Safety, 96:102186. [42]RoyA, MannaR, ChakrabortyS, 2019. Support vector regression based metamodeling for structural reliability analysis. Probabilistic Engineering Mechanics, 55:78-89. [43]SchuëllerGI, PradlwarterHJ, 2007. Benchmark study on reliability estimation in higher dimensions of structural systems–an overview. Structural Safety, 29(3):167-182. [44]SongSF, LuZZ, QiaoHW, 2009. Subset simulation for structural reliability sensitivity analysis. Reliability Engineering & System Safety, 94(2):658-665. [45]SuGS, PengLF, HuLH, 2017. A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis. Structural Safety, 68:97-109. [46]WangJS, LiCF, XuGJ, et al., 2021. Efficient structural reliability analysis based on adaptive Bayesian support vector regression. Computer Methods in Applied Mechanics and Engineering, 387:114172. [47]WangZY, ShafieezadehA, 2019a. ESC: an efficient error-based stopping criterion for Kriging-based reliability analysis methods. Structural and Multidisciplinary Optimization, 59(5):1621-1637. [48]WangZY, ShafieezadehA, 2019b. REAK: reliability analysis through error rate-based adaptive Kriging. Reliability Engineering & System Safety, 182:33-45. [49]WuHQ, KuangSJ, HouHB, 2019. Research on application of electric vehicle collision based on reliability optimization design method. International Journal of Computational Methods, 16(7):1950034. [50]YiJX, WuFL, ZhouQ, et al., 2021. An active-learning method based on multi-fidelity Kriging model for structural reliability analysis. Structural and Multidisciplinary Optimization, 63(1):173-195. [51]YounBD, ChoiKK, YangRJ, et al., 2004. Reliability-based design optimization for crashworthiness of vehicle side impact. Structural and Multidisciplinary Optimization, 26(3-4):272-283. [52]ZhangXF, PandeyMD, 2013. Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method. Structural Safety, 43:28-40. [53]ZhangXF, WangL, SørensenJD, 2020. AKOIS: an adaptive Kriging oriented importance sampling method for structural system reliability analysis. Structural Safety, 82:101876. [54]ZhaoH, GaoZH, XuF, et al., 2019. Review of robust aerodynamic design optimization for air vehicles. Archives of Computational Methods in Engineering, 26(3):685-732. [55]ZhouT, PengYB, 2020a. Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis. Computers & Structures, 241:106358. [56]ZhouT, PengYB, 2020b. Structural reliability analysis via dimension reduction, adaptive sampling, and Monte Carlo simulation. Structural and Multidisciplinary Optimization, 62(5):2629-2651. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>