CLC number:
On-line Access: 2025-01-21
Received: 2023-08-04
Revision Accepted: 2024-01-08
Crosschecked: 2025-01-21
Cited: 0
Clicked: 824
Zongming ZHU, Weihao LUO, Zongjing LIN, Yuzhe KANG, Maoying ZHOU, Ban WANG, Huawei QIN. Design and experimental validation of an electromagnetic launching mechanism for a tethered net[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300398 @article{title="Design and experimental validation of an electromagnetic launching mechanism for a tethered net", %0 Journal Article TY - JOUR
绳网电磁弹射装置的设计和实验验证机构:杭州电子科技大学,机械工程学院,中国杭州,310018 目的:目前柔性绳网捕获技术的主要发射方式存在发射效率低、产生的噪音大和产生的冲击大等不足。针对传统绳网发射方式的缺陷,本文旨在提出并设计一种基于电磁弹射的绳网发射装置,以期通过实验分析及可行性验证,为绳网发射技术提供一种新途径。 创新点:1.建立了弹丸在磁阻式线圈发射器工作时的理论模型,得到了弹丸出口速度与电解电容初始充电电压之间的关系;2.建立了弹丸飞行的动力学模型,并通过实验分析和验证了该模型的有效性;3.设计并制作了基于电磁弹射的绳网发射样机,并通过目标捕获实验验证了该样机的有效性。 方法:1.通过实验分析,验证磁阻式线圈发射器工作时的电流变化情况(图4);2.通过对弹丸的运动学建模与飞行轨迹观测实验,模拟弹丸在不同连接方式下的运动规律(图5和6);3.通过绳网发射样机对目标的捕获实验,验证其捕获目标的可行性(图7)。 结论:1.提高电解电容的初始充电电压可提高弹丸的出口速度;2.无论连接方式如何,随着发射角度的增加,绳网达到最大展开所需的时间逐渐增加;3.绳网发射样机捕获目标的成功率受发射角度、受网尺寸、发射样机与目标之间的距离等因素影响。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BarnesPN, RhoadsGL, TolliverJC, et al., 2004. Compact, lightweight, superconducting power generators. The 12th Symposium on Electromagnetic Launch Technology, p.158-163. ![]() [2]BischofB, 2003. ROGER–Robotic Geostationary Orbit Restorer. The 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. ![]() [3]BresieDA, AndrewsJA, 1991. Design of a reluctance accelerator. IEEE Transactions on Magnetics, 27(1):623-627. ![]() [4]BrownMR, CothranCD, LandremanM, et al., 2002. Energetic particles from three-dimensional magnetic reconnection events in the swarthmore spheromak experiment. Physics of Plasmas, 9(5):2077-2084. ![]() [5]ChenQQ, YangLW, ZhangQB, 2009. Dynamic model and simulation of orbital net casting and ground test. Journal of National University of Defense Technology, 31(3):16-19(in Chinese). ![]() [6]ChenQQ, FengZW, ZhangGB, et al., 2022. Dynamic modeling and simulation of anti-UAV tethered-net capture system. Journal of National University of Defense Technology, 44(2):9-15(in Chinese). ![]() [7]CowanM, CnareE, DugginB, et al., 1986. The reconnection gun. IEEE Transactions on Magnetics, 22(6):1429-1434. ![]() [8]FairHD, 2009. Advances in electromagnetic launch science and technology and its applications. IEEE Transactions on Magnetics, 45(1):225-230. ![]() [9]FarajR, PopławskiB, GabryelD, et al., 2022. Adaptive airbag system for increased evacuation safety. Engineering Structures, 270:114853. ![]() [10]KayeRJ, 2004. Operational requirements and issues for coilgun EM launchers. The 12th Symposium on Electromagnetic Launch Technology, p.59-64. ![]() [11]LiuYM, XiongZM, ChenX, et al., 2022. Simulation and experimental study of the traction and deployment of an interceptive space net wih anti-UAV. Acta Armamentarii, 43(9):2048-2057(in Chinese). ![]() [12]MaWM, LuJY, LiuYQ, 2019. Research progress of electromagnetic launch technology. IEEE Transactions on Plasma Science, 47(5):2197-2205. ![]() [13]McNabIR, 2003. Launch to space with an electromagnetic railgun. IEEE Transactions on Magnetics, 39(1):295-304. ![]() [14]MeinelC, 2007. For love of a gun. IEEE Spectrum, 44(7):40-46. ![]() [15]NechitailoNV, LewisKB, 2006. Critical velocity for rails in hypervelocity launchers. International Journal of Impact Engineering, 33(1-12):485-495. ![]() [16]OrbachY, OrenM, EinatM, 2022. 75 m/s simulation and experiment of two-stage reluctance coilgun. Journal of Mechanical Science and Technology, 36(3):1123-1130. ![]() [17]SinnT, McRobbM, WujekA, et al., 2013. Lessons learned from REXUS12’S Suaineadh experiment: spinning deployment of a space web in milli gravity. The 21st ESA Symposium on European Rocket and Balloon Programmes and Related Research. ![]() [18]SladeGW, 2005. A simple unified physical model for a reluctance accelerator. IEEE Transactions on Magnetics, 41(11):4270-4276. ![]() [19]SuZZ, ZhangT, GuoW, et al., 2015. Investigation of armature capture effect on synchronous induction coilgun. IEEE Transactions on Plasma Science, 43(5):1215-1219. ![]() [20]YuD, JudaszA, ZhengM, et al., 2022. Design and testing of a net-launch device for drone capture. AIAA SCITECH 2022 Forum. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>