CLC number:
On-line Access: 2025-02-28
Received: 2023-12-07
Revision Accepted: 2024-04-01
Crosschecked: 2025-02-28
Cited: 0
Clicked: 1440
Citations: Bibtex RefMan EndNote GB/T7714
Jindan WANG, Xiaolong MA, Xinghan ZHU, Xin WANG, Lan ZHANG, Binrui WANG. Kinematic modeling and stability analysis for a wind turbine blade inspection robot[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300619 @article{title="Kinematic modeling and stability analysis for a wind turbine blade inspection robot", %0 Journal Article TY - JOUR
风电叶片检测机器人运动建模与稳定性分析机构:1中国计量大学,机电工程学院,中国杭州,310018;2之江实验室,中国杭州,311121 目的:目前大多数风电叶片检测机器人体积重量较大,且无法方便地检测叶片主梁隐患。本文旨在设计一种体积小、重量轻、效率高的风电叶片主梁检测机器人以实现对风电叶片主梁隐患的检测。 创新点:1.提出轮翼复合机器人的设计方案;2.设计一种曲面自适应扫查机构;3.实现叶片曲面截面的规则化处理;4.建立轮式机器人曲面上位姿描述方法。 方法:1.建立机器人整机模型,并针对风电叶片的非规则曲面设计变曲率曲面自适应检测装置;2.为准确描述叶片表面的弧形特征,采用叶素截面微分和最小二乘拟合椭圆的方法对不规则截面曲线进行数值分析,建立机器人在不同截面特征下的位姿描述方程,并确定机器人在非结构化环境中的可稳定移动范围;3.基于虚拟样机技术,对机器人在叶片上不同位置的运行状态进行仿真,并通过样机测试实验验证机器人设计的合理性。 结论:1.风电叶片可采用基于叶素理论微分和椭圆拟合的方法进行规则化处理;2.曲面上轮式机器人位姿描述可由单轮位姿描述推广到多轮位姿描述;3.本文设计的轮翼复合机器人仅靠车轮与叶片表面的摩擦力就能够在与竖直方向呈±14.06°夹角的区域内以0.25 m/s的速度在实验叶片上方稳定行走和停留,且同时可实现以0.10 m/s的速度对叶片主梁区域自适应耦合扫查。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]CarM, MarkovicL, IvanovicA, et al., 2020. Autonomous wind-turbine blade inspection using LiDAR-equipped unmanned aerial vehicle. IEEE Access, 8:131380-131387. ![]() [2]ChouJS, OuYC, LinKY, 2019. Collapse mechanism and risk management of wind turbine tower in strong wind. Journal of Wind Engineering and Industrial Aerodynamics, 193:103962. ![]() [3]CieslakC, ShahA, ClarkB, et al., 2023. Wind-turbine inspection, maintenance and repair robotic system. ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, No. V014T37A004. ![]() [4]CiveraM, SuraceC, 2022. Non-destructive techniques for the condition and structural health monitoring of wind turbines: a literature review of the last 20 years. Sensors, 22(4):1627. ![]() [5]FanJC, YangCJ, ChenYH, et al., 2018. An underwater robot with self-adaption mechanism for cleaning steel pipes with variable diameters. Industrial Robot, 45(2):193-205. ![]() [6]FrankoJ, DuSZ, KallweitS, et al., 2020. Design of a multi-robot system for wind turbine maintenance. Energies, 13(10):2552. ![]() [7]GuWB, HuDW, ChengL, et al., 2020. Autonomous wind turbine inspection using a quadrotor. International Conference on Unmanned Aircraft Systems, p.709-715. ![]() [8]GuoZW, WangBR, LuoHH, et al., 2017. Compliance control of contact force for climbing robot based on passive observation and control. Acta Energiae Solaris Sinica, 38(2):503-508 (in Chinese). ![]() [9]HayashiS, TakeiT, HamamuraK, et al., 2017. Moving mechanism for a wind turbine blade inspection and repair robot. IEEE/SICE International Symposium on System Integration, p.270-275. ![]() [10]JungS, ShinJU, MyeongW, et al., 2015. Mechanism and system design of MAV(Micro Aerial Vehicle)-type wall-climbing robot for inspection of wind blades and non-flat surfaces. The 15th International Conference on Control, Automation and Systems, p.1757-1761. ![]() [11]KocerBB, OrrL, StephensB, et al., 2022. An intelligent aerial manipulator for wind turbine inspection and repair. UKACC 13th International Conference on Control, p.226-227. ![]() [12]LeeDG, OhS, SonHI, 2016. Wire-driven parallel robotic system and its control for maintenance of offshore wind turbines. IEEE International Conference on Robotics and Automation, p.902-908. ![]() [13]LiJC, CaoLK, XiaoXH, 2019. Design and adsorption stability analysis of wall climbing robot based on wheeled magnetic adsorption for ultrasonic detection. Journal of Central South University (Science and Technology), 50(12):2989-2997 (in Chinese). ![]() [14]PadrigalanKE, LiuJH, 2023. A wind-turbine-tower-climbing robot prototype operating at various speeds and payload capacity: development and validation. Applied Sciences, 13(3):1381. ![]() [15]QuallsJ, CanfieldS, ShibakovA, 2016. Kinematic control of a mobile robot performing manufacturing tasks on non-planar surfaces. Journal of Automation Mobile Robotics and Intelligent Systems, 10(3):12-21. ![]() [16]RanbirS, MahdiY, TravaughnW, et al., 2020. Robotic System for Wind Turbine Airfoil Maintenance. US Patent 11384739B2. ![]() [17]SadeghianR, SarehS, 2021. Multifunctional arm for telerobotic wind turbine blade repair. IEEE International Conference on Robotics and Automation, p.6883-6889. ![]() [18]SahbelA, AbbasA, SattarT, 2019. System design and implementation of wall climbing robot for wind turbine blade inspection. International Conference on Innovative Trends in Computer Engineering, p.242-247. ![]() [19]SarehS, SadeghianR, 2022. Robotic Repair System, US Patent 20240018942A1. ![]() [20]SongZJ, RenHL, ZhangJW, et al., 2016. Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Transactions on Automation Science and Engineering, 13(2):1207-1214. ![]() [21]WangY, ZhangXJ, ZhangML, et al., 2021. Design and analysis of split-flexible wall-climbing robot with adaptive variable curvature façade. Journal of Mechanical Engineering, 57(3):49-58 (in Chinese). ![]() [22]WangYF, LuQ, RenBB, 2023. Wind turbine crack inspection using a quadrotor with image motion blur avoided. IEEE Robotics and Automation Letters, 8(2):1069-1076. ![]() [23]XuC, LiuHD, ZhaoZF, et al., 2022. Design of oil cleaning and NDT robot system for wind power tower. Equipment Management and Maintenance, (14):50-53 (in Chinese). ![]() [24]ZhangY, DongL, ChenRH, et al., 2021. Design and kinematic analysis of crawler-type pipeline endoscope robots for wind turbine blades. China Mechanical Engineering, 32(15):1884-1889 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>