CLC number:
On-line Access: 2025-02-28
Received: 2023-12-18
Revision Accepted: 2024-03-25
Crosschecked: 2025-02-28
Cited: 0
Clicked: 2306
Citations: Bibtex RefMan EndNote GB/T7714
Qinyu ZHAO, Jun CHENG, Yanrui ZHANG, Haoren WANG, Bo WANG, Ruize LI, Hua ZHANG, Zhihua GAN. Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300638 @article{title="Structural optimization of the rotary valve in a two-stage Gifford-McMahon-type pulse-tube cryocooler working at liquid helium temperatures", %0 Journal Article TY - JOUR
液氦温区Gifford-McMahon脉管制冷机的旋转阀结构优化机构:1上海理工大学,能源与动力工程学院,中国上海,200093;2浙大城市学院,浙江省制冷与低温重点实验室,中国杭州,310015;3浙江大学,浙江省制冷与低温重点实验室,中国杭州,310027 目的:液氦温区Gifford-McMahon(GM)脉管制冷机以其长寿命和低振动等优势逐渐成为量子科技和低温物理等尖端科学领域的理想制冷源,但现有旋转阀部件中的不可逆损失严重限制了其在液氦温区的制冷效率。本文旨在提升液氦温区GM脉管制冷机的制冷性能。针对GM脉管制冷机的关键部件旋转阀,本文开发了以泄露损失和流阻损失为指标的㶲损评估方法,优化了旋转阀的结构并基于实验进行了验证,以期为液氦温区高效大冷量的GM脉管制冷机的开发提供参考。 创新点:1.通过交变流动旋转阀㶲损失方程,构建以泄露损失和流阻损失为指标的GM脉管制冷机旋转阀㶲损评估方法;2.搭建实验测试平台,对旋转阀烟损失进行定量测算;3.完整开展从㶲损失理论分析到旋转阀关键部件优化再到实际制冷机性能提升的闭环研究。 方法:1.通过理论分析,推导获得旋转阀内㶲损失特性与操作参数的定量关系(公式(2)~(6));2.分别搭建旋转阀泄漏流量测试平台(图3)和㶲损失评估平台(图5),并根据实验平台定量分析不同运行频率、充气压力和负载对旋转阀㶲损失分布的影响;3.通过Sage软件计算旋转阀流阻损失对脉管制冷机制冷性能的影响情况(图9),并结合实际工艺扩大现有旋转阀的流通面积;4.通过旋转阀㶲损失分析和脉管制冷机性能测试的方法验证所述理论。 结论:1.在液氦温区GM脉管制冷机内的旋转阀中,流阻损失占97.5%以上,泄露损失只占2.5%,因此流阻损失是主要的㶲损失;2.旋转阀流通面积扩大1.5倍后其内流阻显著降低,且压缩机输出㶲可提高1.2~1.5倍;3.使用低流阻旋转阀驱动同一台制冷机冷头时,脉管制冷机可获得0.78 W@4.2 K制冷量,且制冷性能提高约16.4%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlduinoC, AlessandriaF, BalataM, et al., 2019. The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures. Cryogenics, 102:43-56. ![]() [2]Bluefors, 2023a. Cryomech PT425 Pulse Tube Cryocooler. Bluefors. https://bluefors.com/products/cryomech-products/pt425-pulse-tube-cryocooler/ ![]() [3]Bluefors, 2023b. Cryomech PT450 Pulse Tube Cryocooler. Bluefors. https://bluefors.com/products/pulse-tube-cryocoolers/pt450/ ![]() [4]ChoiCQ, 2022. IBM Unveils 433-Qubit Osprey Chip. IEEE Spectrum. https://spectrum.ieee.org/ibm-quantum-computer-osprey ![]() [5]deWaele ATAM, 2011. Basic operation of cryocoolers and related thermal machines. Journal of Low Temperature Physics, 164(5):179-236. ![]() [6]deWaele ATAM, 2012. Finite heat-capacity effects in regenerators. Cryogenics, 52(1):1-7. ![]() [7]GanZH, DongWQ, QiuLM, et al., 2009. A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics, 49(5):198-201. ![]() [8]GedeonD, 2014. Sage User’s Guide. Sage Version 10th Edition. Gedeon Associates, USA. ![]() [9]HaoXH, CoscoJ, ZerkleB, et al., 2022. Development of high cooling capacity and high efficiency 4.2 K pulse tube cryocoolers. International Cryocooler Conference, p.235-240. ![]() [10]Hitachi, 2023. Cryogenic. Johnson Controls-Hitachi Air Conditioning Company. https://compressors.hitachiaircon.com/en/ranges/scroll-compressor/cryogenic ![]() [11]HollisterMI, DhuleyRC, JamesC, et al., 2023. An update on the Colossus mK platform at Fermilab. IOP Conference Series: Materials Science and Engineering, 1302:012030. ![]() [12]JiZQ, FanJ, DongJ, et al., 2022. Development of a cryogen-free dilution refrigerator. Chinese Physics B, 31(12):120703. ![]() [13]KarpenkoM, BogdevičiusM, 2020. Investigation of hydrodynamic processes in the system–“pipeline-fittings”. TRANSBALTICA XI: Transportation Science and Technology, p.331-340. ![]() [14]KarpenkoM, StosiakM, ŠukevičiusŠ, et al., 2023. Hydrodynamic processes in angular fitting connections of a transport machine’s hydraulic drive. Machines, 11(3):355. ![]() [15]KasaiJ, KoyamaT, YokotaM, et al., 2022. Development of a near-5-Kelvin, cryogen-free, pulse-tube refrigerator-based scanning probe microscope. Review of Scientific Instruments, 93(4):043711. ![]() [16]LeiT, XuMY, 2022. Development of a 2 W 4 K pulse tube refrigerator with remote valve. International Cryocooler Conference, p.241-247. ![]() [17]LiangW, deWaele ATAM, 2007. A new type of streaming in pulse tubes. Cryogenics, 47(9-10):468-473. ![]() [18]LiuDL, DietrichM, ThummesG, et al., 2017. Numerical simulation of a GM-type pulse tube cryocooler system: part II. Rotary valve and cold head. Cryogenics, 81:100-106. ![]() [19]PandaD, SatapathyAK, SarangiSK, 2019. Effect of valve opening shapes on the performance of a single-stage Gifford-McMahon cryocooler. Engineering Reports, 1(3):e12044. ![]() [20]QiuLM, ThummesG, 2002. Valve timing effect on the cooling performance of a 4 K pulse tube cooler. Cryogenics, 42(5):327-333. ![]() [21]RadebaughR, O’GallagherA, GaryJ, 2002. Regenerator behavior at 4 K: effect of volume and porosity. AIP Conference Proceedings, 613(1):961-968. ![]() [22]SHICryogenics Group, 2023. Two-Stage Gifford-McMahon Cryocoolers. SHI Cryogenics Group. https://shicryogenics.com/products/cryocoolers/ ![]() [23]SwiftGW, 2002. Thermoacoustics: a Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America, New York, USA, p.97-106. ![]() [24]TanaevaIA, BosCGK, deWaele ATAM, 2006. High-frequency pulse-tube refrigerator for 4 K. AIP Conference Proceedings, 823(1):821-828. ![]() [25]The CUORE Collaboration, 2022. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature, 604(7904):53-58. ![]() [26]ThummesG, GiebelerF, HeidenC, 1995. Effect of pressure wave form on pulse tube refrigerator performance. In: Ross RG (Ed.), Cryocoolers 8. Springer, Boston, USA, p.383-393. ![]() [27]WangB, GanZH, 2013. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 61:43-70. ![]() [28]WangC, QiuLM, DongWQ, et al., 2010. Comparison test of rotary valve system and solenoid valves system for a G-M type pulse tube cryocooler. Cryogenics, (5):6-10 (in Chinese). ![]() [29]XuMY, MorieT, BaoQ, 2019. Cryocooler and Rotary Valve Mechanism. US Patent 10371417B2. ![]() [30]ZhaoQY, WangB, ChaoW, et al., 2023. Numerical simulation and exergy analysis of a single-stage GM cryocooler. Heliyon, 9(7):e18479. ![]() [31]ZhouSL, MatsubaraY, 1998. Experimental research of thermoacoustic prime mover. Cryogenics, 38(8):813-822. ![]() [32]ZhuSW, KakimiY, MatsubaraY, 1997. Investigation of active-buffer pulse tube refrigerator. Cryogenics, 37(8):461-471. ![]() [33]ZhuSW, KakimiY, MatsubaraY, 1998. Waiting time effect of a GM type orifice pulse tube refrigerator. Cryogenics, 38(6):619-624. ![]() [34]ZhuSW, NogawaM, InoueT, 2009. Analysis of DC gas flow in GM type double inlet pulse tube refrigerators. Cryogenics, 49(2):66-71. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>