CLC number:
On-line Access: 2025-05-30
Received: 2023-12-19
Revision Accepted: 2024-06-02
Crosschecked: 2025-05-30
Cited: 0
Clicked: 849
Chuanchuan HOU, Huan WANG, Wei GUAN, Jun CHEN. Road pavement performance prediction using a time series long short-term memory (LSTM) model[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300643 @article{title="Road pavement performance prediction using a time series long short-term memory (LSTM) model", %0 Journal Article TY - JOUR
基于时序长短期记忆模型的道路路面性能预测机构:1北京航空航天大学,交通科学与工程学院,中国北京,100191;2交通运输部公路科学研究院,中国北京,100088 目的:提出一种道路路面性能指标(国际平整度指数和车辙深度)的准确预测方法,并提出一个道路路面使用性能的综合评价指标,以实现对路面综合性能的有效预测。 创新点:1.采用两条典型足尺道路的数据发展了一个高准确率的基于时序长短期记忆模型的道路路面性能预测模型;2.采用对路面技术参数数据进行小波降噪处理,验证了所提模型的鲁棒性。 方法:1.采用温度、降水量、交通量、沥青面层厚度、路龄、维修状况和初始路面技术参数作为影响变量分别建立自回归移动平均模型(ARIMAX)时间序列模型和长短期记忆(LSTM)神经网络模型,对路面各项技术参数进行预测,对收集的路面技术参数数据进行小波降噪处理后再次建立模型对其进行预测,并以此分析异常数据对不同模型精度的影响;2.综合设计规范法、熵权法和模糊评价法的优点对沥青路面的使用性能进行综合评价,选择评价最严格的结果作为最终评价结果,然后将最终评价结果作为输出变量,将平整度、车辙深度和横向力系数三种路面技术参数作为输入变量,并基于反向传播神经网络分类模型建立路面使用性能综合评价模型;3.基于路面使用性能综合评价模型和路面各项技术参数的预测结果得出路面使用性能综合指标的预测状态。 结论:1.相对于ARIMAX时间序列模型,LSTM模型在路面各项技术参数的预测方面表现明显更好,并且对原始数据中的噪声信号具有更强的容忍度和鲁棒性;2.所提出的路面使用性能综合指标预测方法的准确率较高,且整体预测精度可达93.8%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AASHTO (American Association of State Highway and Transportation Officials), 2012. Pavement Management Guide. 2nd Edition. AASHTO, Washington, USA. ![]() [2]AbazaKA, 2016. Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering, 17(3):253-264. ![]() [3]AbdelazizN, Abd El-HakimRT, El-BadawySM, et al., 2020. International roughness index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1):88-99. ![]() [4]AlaviSH, SennKA, 1999. Development of New Pavement Design Equivalent Single Axle Load (ESAL). Report No. FHWA-AZ-99-455, Arizona Department of Transportation, Phoenix, USA. ![]() [5]AlbuquerqueFS, NúñezWP, 2011. Development of roughness prediction models for low-volume road networks in northeast Brazil. Transportation Research Record: Journal of the Transportation Research Board, 2205(1):198-205. ![]() [6]Al-SuleimanTI, ShiyabAMS, 2003. Prediction of pavement remaining service life using roughness data—case study in Dubai. International Journal of Pavement Engineering, 4(2):121-129. ![]() [7]BontempiG, TaiebSB, le BorgneYA, 2012. Machine Learning Strategies for Time Series Forecasting. In: Aufaure MA, Zimányi E (Eds.), Business Intelligence. Springer, Berlin, Germany. ![]() [8]BoxGEP, JenkinsGM, 1970. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, USA. ![]() [9]ChoiJH, AdamsTM, BahiaHU, 2004. Pavement roughness modeling using back-propagation neural networks. Computer-Aided Civil and Infrastructure Engineering, 19(4):295-303. ![]() [10]ChoiS, DoM, 2019. Development of the road pavement deterioration model based on the deep learning method. Electronics, 9(1):3. ![]() [11]DongYS, ShaoYX, LiXT, et al., 2019. Forecasting pavement performance with a feature fusion LSTM-BPNN model. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, p.1953-1962. ![]() [12](UDOT.S. Department of Transportation), 2022. MnRoad Mainline–Interstate 94. Federal Highway Administration. https://infopave.fhwa.dot.gov/MnRoad/Map_Main# ![]() [13]FangMJ, HanCJ, XiaoY, et al., 2020. Prediction modelling of rutting depth index for asphalt pavement using de-noising method. International Journal of Pavement Engineering, 21(7):895-907. ![]() [14]GongHR, SunYR, MeiZJ, et al., 2018. Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks. Construction and Building Materials, 190:710-718. ![]() [15]HintonGE, SalakhutdinovRR, 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507. ![]() [16]Justo-SilvaR, FerreiraA, FlintschG, 2021. Review on machine learning techniques for developing pavement performance prediction models. Sustainability, 13(9):5248. ![]() [17]KaloopMR, El-BadawySM, AhnJ, et al., 2022. A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. International Journal of Pavement Engineering, 23(3):862-876. ![]() [18]KayRK, MahoneyJP, JacksonNC, 1993. The WSDOT Pavement Management System—a 1993 Update. Report No. WA-RD 274.1, Washington State Department of Transportation, Olympia, USA. ![]() [19]LiS, FanMM, XuLK, et al., 2021. Rutting performance of semi-rigid base pavement in RIOHTrack and laboratory evaluation. Frontiers in Materials, 7:590604. ![]() [20]LiW, JuHY, XiaoLY, et al., 2019. International roughness index prediction based on multigranularity fuzzy time series and particle swarm optimization. Expert Systems with Applications: X, 2:100006. ![]() [21]LiZ, ZhangJP, LiuT, et al., 2021. Using PSO-SVR algorithm to predict asphalt pavement performance. Journal of Performance of Constructed Facilities, 35(6):04021094. ![]() [22]MarcelinoP, de Lurdes AntunesM, FortunatoE, et al., 2021. Machine learning approach for pavement performance prediction. International Journal of Pavement Engineering, 22(3):341-354. ![]() [23]OwolabiAO, SadiqOM, AbiolaOS, 2012. Development of performance models for a typical flexible road pavement in Nigeria. International Journal for Traffic and Transport Engineering, 2(3):178-184. ![]() [24]Pérez-AceboH, Linares-UnamunzagaA, RojiE, et al., 2020. IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10(2):97. ![]() [25]RobbinsMM, TranNH, 2016. A Synthesis Report: Value of Pavement Smoothness and Ride Quality to Roadway Users and the Impact of Pavement Roughness on Vehicle Operating Costs. NCAT Report No. 16-03, National Center for Asphalt Technology at Auburn University, Auburn, USA. ![]() [26]SayersMW, GillespieTD, QueirozCA, 1986. International Experiment to Establish Correlations and Standard Calibration Methods for Road Roughness Measurement. Technical Report No. 45, World Bank, Washington, USA. ![]() [27]SchwarzG, 1978. Estimating the dimension of a model. Annals of Statistics, 6(2):461-464. ![]() [28]StankeL, KubicekJ, VilimekD, et al., 2020. Towards to optimal wavelet denoising scheme–a novel spatial and volumetric mapping of wavelet-based biomedical data smoothing. Sensors, 20(18):5301. ![]() [29]TabatabaeeN, ZiyadiM, ShafahiY, 2013. Two-stage support vector classifier and recurrent neural network predictor for pavement performance modeling. Journal of Infrastructure Systems, 19(3):266-274. ![]() [30]ValenciaD, OrejuelaD, SalazarJ, et al., 2016. Comparison analysis between Rigrsure, Sqtwolog, Heursure and Minimaxi techniques using hard and soft thresholding methods. Proceedings of the 21st Symposium on Signal Processing, Images and Artificial Vision. ![]() [31]YaoLY, DongQ, JiangJW, et al., 2019. Establishment of prediction models of asphalt pavement performance based on a novel data calibration method and neural network. Transportation Research Record: Journal of the Transportation Research Board, 2673(1):66-82. ![]() [32]ZaghloulS, HelaliK, BekheetW, 2006. Development and Implementation of Arizona Department of Transportation (ADOT) Pavement Management System (PMS). Report No. FHWA-AZ-06-494, Arizona Department of Transportation, Phoenix, USA. ![]() [33]ZhaoJN, WangH, LuP, 2022. Impact analysis of traffic loading on pavement performance using support vector regression model. International Journal of Pavement Engineering, 23(11):3716-3728. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>