CLC number:
On-line Access: 2025-02-28
Received: 2024-01-21
Revision Accepted: 2024-05-11
Crosschecked: 2025-02-28
Cited: 0
Clicked: 1735
Citations: Bibtex RefMan EndNote GB/T7714
Chao SHEN, Jianxin ZHU, Jian CHEN, Saibai LI, Lixin YI. Parameter matching and optimization of hybrid excavator swing system[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400040 @article{title="Parameter matching and optimization of hybrid excavator swing system", %0 Journal Article TY - JOUR
混合动力挖掘机回转系统的参数匹配与优化机构:1中南大学,极端服役性能精准制造全国重点实验室,中国长沙,410083;2山河智能装备股份有限公司,国家企业研发中心,中国长沙,410100 目的:挖掘机等工程机械的回转系统在回转加速-制动过程中存在严重的溢流能量损失。本文旨在探究混合动力回转节能系统及其参数匹配、优化方法,以获得综合性能最优的系统参数组合,实现回转能量高效回收再利用,降低回转系统能耗。 创新点:1.提出一种耦合式回转能量再生混合动力系统(SSEHS),并阐述其工作原理和节能机制;2.考虑系统多目标优化和条件约束,设计多目标优化粒子群算法,获得综合性能最优的参数组合方案;3.基于物理样机测试数据,建立仿真模型,证实节能系统和算法有效性。 方法:1.基于挖掘机传统液压回转系统和液压储能原理,构建耦合式回转能量再生混合动力系统;2.通过理论推导,设计一种基于自适应网格的改进多目标粒子群(IMOPSO)算法,计算得到综合性能最优的系统参数组合;3.根据节能系统结构和工作原理,设计基于参数规则的控制策略;4.通过物理样机数据和仿真模拟,验证所提回转节能系统和参数优化方法的可行性和有效性。 结论:1.与传统回转系统相比,所提回转节能系统回转加速过程中显著减小主泵所需输出压力;2.所提回转节能系统能耗降低约51.4%,参数优化后节能效率又提高13.2%;3.与传统回转系统相比,所提回转节能系统可降低78.3%溢流能量损失。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdel-baqiO, NasiriA, MillerP, 2015. Dynamic performance improvement and peak power limiting using ultracapacitor storage system for hydraulic mining shovels. IEEE Transactions on Industrial Electronics, 62(5):3173-3181. ![]() [2]BorthakurS, SubramanianSC, 2019. Design and optimization of a modified series hybrid electric vehicle powertrain. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(6):1419-1435. ![]() [3]ChenQH, LinTL, RenHL, 2018. Parameters optimization and control strategy of power train systems in hybrid hydraulic excavators. Mechatronics, 56:16-25. ![]() [4]ClercM, KennedyJ, 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58-73. ![]() [5]DoTC, DangTD, DinhTQ, et al., 2021. Developments in energy regeneration technologies for hydraulic excavators: a review. Renewable and Sustainable Energy Reviews, 145:111076. ![]() [6]GongJ, ZhangDQ, LiuCS, et al., 2019a. Optimization of electro-hydraulic energy-savings in mobile machinery. Automation in Construction, 98:132-145. ![]() [7]GongJ, ZhangDQ, GuoY, et al., 2019b. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system. Applied Energy, 233-234:724-734. ![]() [8]GongJ, ZhangDQ, GuoY, et al., 2020. Potential energy recovery method based on alternate recovery and utilization of multiple hydraulic cylinders. Automation in Construction, 112:103105. ![]() [9]HagaM, HiroshiW, FujishimaK, 2001. Digging control system for hydraulic excavator. Mechatronics, 11(6):665-676. ![]() [10]HillmanBJ, ZhangJ, TognettiLC, et al., 2016. Hydraulic Control System Having Swing Motor Energy Recovery. US Patent 9388828. ![]() [11]HoTH, AhnKK, 2012. Design and control of a closed-loop hydraulic energy-regenerative system. Automation in Construction, 22:444-458. ![]() [12]KwonTS, LeeSW, SulSK, et al., 2010. Power control algorithm for hybrid excavator with supercapacitor. IEEE Transactions on Industry Applications, 46(4):1447-1455. ![]() [13]LatasW, StojekJ, 2018. A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system. Energy, 153:836-848. ![]() [14]LinTL, LiuQ, 2013. Method of parameter matching for hydraulic hybrid system for excavators. Journal of Shanghai Jiaotong University, 47(5):728-733 (in Chinese). ![]() [15]LinTL, YangJ, LiuQ, et al., 2013. Simulation study on a rotary driving system in hydraulic excavator. Journal of Huaqiao University (Natural Science), 34(3):247-252 (in Chinese). ![]() [16]LinTL, YeYY, FuSJ, et al., 2014. Energy-saving system of swing for hydraulic excavators based on electric energy recovery technology. China Journal of Highway and Transport, 27(8):120-126 (in Chinese). ![]() [17]LinTL, ChenQ, RenHL, et al., 2017. Review of boom potential energy regeneration technology for hydraulic construction machinery. Renewable and Sustainable Energy Reviews, 79:358-371. ![]() [18]LiuCS, HeQH, GongJ, et al., 2016. Modeling and experimental research on rotary braking energy recovery system of hybrid excavator. Journal of Central South University (Science and Technology), 47(5):1533-1542 (in Chinese). ![]() [19]PoliR, KennedyJ, BlackwellT, 2007. Particle swarm optimization: an overview. Swarm Intelligence, 1(1):33-57. ![]() [20]PrasanthiA, ShareefH, AsnaM, et al., 2021. Optimization of hybrid energy systems and adaptive energy management for hybrid electric vehicles. Energy Conversion and Management, 243:114357. ![]() [21]QuSY, FassbenderD, VaccaA, et al., 2021. A high-efficient solution for electro-hydraulic actuators with energy regeneration capability. Energy, 216:119291. ![]() [22]ShangTL, ZhangJ, MaPF, 2014. Hydraulic Control System Having Energy Recovery. US Patent 8726645. ![]() [23]SuppapitnarmA, SeffenKA, ParksGT, et al., 2000. A simulated annealing algorithm for multi-objective optimization. Engineering Optimization, 33(1):59-85. ![]() [24]ThompsonB, YoonHS, KimJ, et al., 2014. Swing Energy Recuperation Scheme for Hydraulic Excavators. SAE Technical Paper No. 2014-01-2402, SAE International, Warrendale, USA. ![]() [25]TongZM, WuSS, TongSG, et al., 2020. Energy-saving technologies for construction machinery: a review of electro-hydraulic pump-valve coordinated system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(5):331-349. ![]() [26]TongZM, MiaoJZ, LiYS, et al., 2021. Development of electric construction machinery in China: a review of key technologies and future directions. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(4):245-264. ![]() [27]WangHM, WangQF, 2020. Parameter matching and control of series hybrid hydraulic excavator based on electro-hydraulic composite energy storage. IEEE Access, 8:111899-111912. ![]() [28]WangHM, WangQF, HuBZ, 2017. A review of developments in energy storage systems for hybrid excavators. Automation in Construction, 80:1-10. ![]() [29]WeiLX, NingZQ, QuanL, et al., 2022. Research on parameter matching of the asymmetric pump potential energy recovery system based on multi-core parallel optimization method. Processes, 10(11):2298. ![]() [30]XiaLP, QuanL, GeL, et al., 2018. Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom. Energy Conversion and Management, 156:680-687. ![]() [31]YuYX, AhnKK, 2020a. Improvement of energy regeneration for hydraulic excavator swing system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1):53-67. ![]() [32]YuYX, AhnKK, 2020b. Energy regeneration and reuse of excavator swing system with hydraulic accumulator. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4):859-873. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>