CLC number:
On-line Access: 2025-06-25
Received: 2024-01-23
Revision Accepted: 2024-05-17
Crosschecked: 2025-06-25
Cited: 0
Clicked: 1379
Zhigang SHAN, Mengxia SONG, Jiapeng PAN, Baolong ZHANG, Miaojun SUN, Fang HE. Hydrodynamic characteristics of a wind turbine monopile foundation integrated with an oscillating water column wave energy device[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400045 @article{title="Hydrodynamic characteristics of a wind turbine monopile foundation integrated with an oscillating water column wave energy device", %0 Journal Article TY - JOUR
集成振荡水柱波能装置的海上风电单桩基础水动力特性试验研究机构:1中国电建集团华东勘测设计研究院有限公司,中国杭州,311100;2浙江大学,海洋学院,中国舟山,316021;3浙江省能源集团有限公司,中国杭州,310007 目的:通过振荡水柱装置与海上风电单桩基础结合的方式来提高成本效益,有望在提供波浪能的同时增加波能耗散、降低波浪载荷。本文对振荡水柱装置-单桩基础集成系统的水动力特性展开实验研究,旨在探讨波浪条件、动力输出(PTO)特性等参量对其波能俘获和波浪荷载的影响规律,为未来潜在的工程应用设计提供支持。 创新点:1.揭示PTO二次阻尼效应对于波能俘获和波浪荷载的作用机理;2.探讨振荡水柱装置-单桩基础集成系统波能俘获和波浪减荷的协同效应。 方法:1.采用不同尺寸圆形孔板模拟非线性能量俘获系统;2.通过一系列波浪水槽试验,对振荡水柱装置-单桩基础集成系统的水动力特性、波能俘获及波浪荷载展开研究;3.测量气室内气压及液面高程,获取不同入射波浪要素和孔板开口率下的气压及液面振荡信息,并计算气动功率、捕获宽度比等波能俘获性能指标;4.采用减载比量化振荡水柱装置-单桩基础集成系统相对于传统单桩基础的波浪减荷效果。 结论:1.由于二次阻尼效应的存在,不同空气流量下孔板的等效线性阻尼效果不同,而改变孔板开口率将导致气室内液面振荡和波能俘获的峰值波频发生偏移;2.振荡水柱装置-单桩基础集成系统在高频波浪作用下正向减荷效果显著;3.通过调整孔板开口率可使振荡水柱装置-单桩基础集成系统在宽频波浪范围下兼顾较高波能俘获效率和良好结构受力。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndersenJ, AbrahamsenR, AndersenTL, et al., 2020. Wave load mitigation by perforation of monopiles. Journal of Marine Science and Engineering, 8(5):352. ![]() [2]BoccottiP, FilianotiP, FiammaV, et al., 2007. Caisson breakwaters embodying an OWC with a small opening—part II: a small-scale field experiment. Ocean Engineering, 34(5-6):820-841. ![]() [3]ChangG, JonesCA, RobertsJD, et al., 2018. A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127:344-354. ![]() [4]ChenJ, WenHJ, WangYX, et al., 2020. Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater. Energy, 211:118681. ![]() [5]CongPW, TengB, BaiW, et al., 2021. Wave power absorption by an oscillating water column (OWC) device of annular cross-section in a combined wind-wave energy system. Applied Ocean Research, 107:102499. ![]() [6]ElhanafiA, KimCJ, 2018. Experimental and numerical investigation on wave height and power take-off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy, 125:518-528. ![]() [7]FalcãoAFO, HenriquesJCC, 2016. Oscillating-water-column wave energy converters and air turbines: a review. Renewable Energy, 85:1391-1424. ![]() [8]HayatiM, NiksereshtAH, HaghighiAT, 2020. Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics. Renewable Energy, 161:386-394. ![]() [9]HeF, HuangZH, 2014. Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study. Ocean Engineering, 88:618-626. ![]() [10]HeF, HuangZH, 2016. Using an oscillating water column structure to reduce wave reflection from a vertical wall. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(2):04015021. ![]() [11]HeF, HuangZH, 2017. Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(5):329-345. ![]() [12]HeF, HuangZH, LawAWK, 2012. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: an experimental study. Ocean Engineering, 51:16-27. ![]() [13]HeF, HuangZH, LawAWK, 2013. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Applied Energy, 106:222-231. ![]() [14]HeF, LiMJ, HuangZH, 2016. An experimental study of pile-supported OWC-type breakwaters: energy extraction and vortex-induced energy loss. Energies, 9(7):540. ![]() [15]HeF, LengJ, ZhaoXZ, 2017. An experimental investigation into the wave power extraction of a floating box-type breakwater with dual pneumatic chambers. Applied Ocean Research, 67:21-30. ![]() [16]HeF, ZhangHS, ZhaoJJ, et al., 2019. Hydrodynamic performance of a pile-supported OWC breakwater: an analytical study. Applied Ocean Research, 88:326-340. ![]() [17]HeF, LiuYB, PanJP, et al., 2023a. Advanced ocean wave energy harvesting: current progress and future trends. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(2):91-108. ![]() [18]HeF, LinY, PanJP, et al., 2023b. Experimental investigation of vortex evolution around oscillating water column wave energy converter using particle image velocimetry. Physics of Fluids, 35(1):015151. ![]() [19]HoweD, NaderJR, MacfarlaneG, 2020. Performance analysis of a floating breakwater integrated with multiple oscillating water column wave energy converters in regular and irregular seas. Applied Ocean Research, 99:102147. ![]() [20]KooW, 2009. Nonlinear time–domain analysis of motion-restrained pneumatic floating breakwater. Ocean Engineering, 36(9-10):723-731. ![]() [21]KuoYS, ChungCY, HsiaoSC, et al., 2017. Hydrodynamic characteristics of oscillating water column caisson breakwaters. Renewable Energy, 103:439-447. ![]() [22]LeeJH, KwakTY, JeongYJ, et al., 2023. A study on the lateral load capacity of a novel hybrid monopile via a centrifuge model test. Energies, 16(21):7234. ![]() [23]LiYN, LiuSZ, XuCL, et al., 2022. Experimental study on the cylindrical oscillating water column device. Ocean Engineering, 246:110523. ![]() [24]LiuZQ, FanSL, WangYZ, et al., 2021. Genetic-algorithm-based layout optimization of an offshore wind farm under real seabed terrain encountering an engineering cost model. Energy Conversion and Management, 245:114610. ![]() [25]LiuJB, SongDR, LiQA, et al., 2023. Life cycle cost modelling and economic analysis of wind power: a state of art review. Energy Conversion and Management, 277:116628. ![]() [26]MaHW, YangJ, 2020. A novel hybrid monopile foundation for offshore wind turbines. Ocean Engineering, 198:106963. ![]() [27]MicheleS, RenziE, Perez-CollazoC, et al., 2019. Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems. Ocean Engineering, 191:106519. ![]() [28]Perez-CollazoC, GreavesD, IglesiasG, 2018. Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter. Energy Conversion and Management, 171:307-325. ![]() [29]QuM, YuDY, DouZH, et al., 2021. Design and experimental study of a pile-based breakwater integrated with OWC chamber. China Ocean Engineering, 35(3):443-453. ![]() [30]RamG, SaadMR, Zainal AbidinN, et al., 2022. Hydrodynamic performance of a hybrid system of a floating oscillating water column and a breakwater. Ocean Engineering, 264:112463. ![]() [31]SchopfW, 2009. Flow Load Controlling Mechanism for Tower of Offshore-Wind Turbine i.e. Monopile, Has Tower Arranged with Flow Resistance-Favorable Surface Structure Such That Sea Current Exerts Smaller Horizontal Forces on Tower. German Patent DE102008008760-A1. ![]() [32]ShengWN, 2019. Wave energy conversion and hydrodynamics modelling technologies: a review. Renewable and Sustainable Energy Reviews, 109:482-498. ![]() [33]ShiXL, LiangBC, DuST, et al., 2022. Wave energy assessment in the china east adjacent seas based on a 25-year wave-current interaction numerical simulation. Renewable Energy, 199:1381-1407. ![]() [34]ZhaoXL, LiY, ZouQP, et al., 2022. Long wave absorption by a dual purpose Helmholtz resonance OWC breakwater. Coastal Engineering, 178:104203. ![]() [35]ZhengSM, ZhangYL, IglesiasG, 2019. Coast/breakwater-integrated OWC: a theoretical model. Marine Structures, 66:121-135. ![]() [36]ZhengSM, AntoniniA, ZhangYL, et al., 2020a. Hydrodynamic performance of a multi-oscillating water column (OWC) platform. Applied Ocean Research, 99:102168. ![]() [37]ZhengSM, ZhuGX, SimmondsD, et al., 2020b. Wave power extraction from a tubular structure integrated oscillating water column. Renewable Energy, 150:342-355. ![]() [38]ZhouY, NingDZ, ShiW, et al., 2020. Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile. Coastal Engineering, 162:103731. ![]() [39]ZhuGX, GrahamD, ZhengSM, et al., 2020. Hydrodynamics of onshore oscillating water column devices: a numerical study using smoothed particle hydrodynamics. Ocean Engineering, 218:108226. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>