CLC number:
On-line Access: 2025-05-30
Received: 2024-02-02
Revision Accepted: 2024-06-05
Crosschecked: 2025-05-30
Cited: 0
Clicked: 1217
Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU. COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400062 @article{title="COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics", %0 Journal Article TY - JOUR
基于CP-ZMP-COM动力学的双足机器人质心轨迹规划及抗扰动控制机构:1浙江大学机械工程学院,流体动力与机电系统国家重点实验室,中国杭州,310058;2浙江大学机械工程学院,浙江省先进制造技术重点实验室,中国杭州,310058 目的:通过对成人行走过程中矢状面与冠状面内质心轨迹的分析,本文探索双足机器人自由、灵活行走的步态规划方法,并实现对其受意外外力干扰下的稳定行走。 方法:在基于线性倒立摆模型的双足机器人运动控制中,质心、零力矩点和捕获点是实现双足机器人稳定行走的重要因素。1.通过对矢状面与冠状面内质心运动轨迹的分析,建立双足机器人CP-ZMP-COM动力学模型,由此计算期望的双足机器人质心、零力矩点和捕获点,进而提出一种改进的双足机器人质心轨迹规划方法;2.提出双足机器人在矢状面与冠状面内运动协调的抗扰动反馈补偿控制方法,对双足机器人质心和捕获点位置进行反馈补偿,使双足机器人质心和捕获点轨迹能够在后续支撑切换时逼近理想状态;3.通过小型双足机器人样机及其仿真模型,对改进的双足机器人质心轨迹规划方法及抗扰动反馈补偿控制方法进行行走仿真与实验验证。 结论:1.改进的双足机器人质心轨迹规划方法可用于实现小型双足机器人横行、斜行及原地转圈等灵活行走;2.基于所提出的抗扰动反馈补偿控制方法,小型双足机器人受随机脉冲外力下横行、斜行及原地转圈时仍能保持稳定而不摔倒。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChoiY, KimD, OhY, et al., 2007. Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Transactions on Robotics, 23(6):1285-1293. ![]() [2]EnglsbergerJ, OttC, RoaMA, et al., 2011. Bipedal walking control based on capture point dynamics. IEEE/RSJ International Conference on Intelligent Robots and Systems, p.4420-4427. ![]() [3]EnglsbergerJ, OttC, Albu-SchäfferA, 2015. Three-dimensional bipedal walking control based on divergent component of motion. IEEE Transactions on Robotics, 31(2):355-368. ![]() [4]HofAL, 2008. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Human Movement Science, 27(1):112-125. ![]() [5]JoeHM, OhJH, 2018. Balance recovery through model predictive control based on capture point dynamics for biped walking robot. Robotics and Autonomous Systems, 105:1-10. ![]() [6]KajitaS, HirukawaH, HaradaK, et al., 2014. Introduction to Humanoid Robotics. Springer, Berlin Heidelberg, Germany. ![]() [7]KuoAD, 2007. The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Human Movement Science, 26(4):617-656. ![]() [8]LiTHS, KuoPH, ChenLH, et al., 2022. Fuzzy double deep Q-network-based gait pattern controller for humanoid robots. IEEE Transactions on Fuzzy Systems, 30(1):147-161. ![]() [9]MassahBA, SharifiKA, SalehiniaY, et al., 2012. An open loop walking on different slopes for NAO humanoid robot. Procedia Engineering, 41:296-304. ![]() [10]OwakiD, KoyamaM, YamaguchiS, et al., 2010. A two-dimensional passive dynamic running biped with knees. IEEE International Conference on Robotics and Automation, p.5237-5242. ![]() [11]ParkHY, KimJH, YamamotoK, 2022. A new stability framework for trajectory tracking control of biped walking robots. IEEE Transactions on Industrial Informatics, 18(10):6767-6777. ![]() [12]PrattJ, CarffJ, DrakunovS, et al., 2006. Capture point: a step toward humanoid push recovery. The 6th IEEE-RAS International Conference on Humanoid Robots, p.200-207. ![]() [13]XieHL, ZhaoXF, SunQC, et al., 2020. A new virtual-real gravity compensated inverted pendulum model and ADAMS simulation for biped robot with heterogeneous legs. Journal of Mechanical Science and Technology, 34(1):401-412. ![]() [14]YamamotoK, KamiokaT, SugiharaT, 2020. Survey on model-based biped motion control for humanoid robots. Advanced Robotics, 34(21-22):1353-1369. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>