CLC number:
On-line Access: 2025-05-30
Received: 2024-02-23
Revision Accepted: 2024-07-03
Crosschecked: 2025-05-30
Cited: 0
Clicked: 1222
Citations: Bibtex RefMan EndNote GB/T7714
Yonggang LIN, Xiangheng FENG, Hongwei LIU, Yong SUN. Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400097 @article{title="Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network", %0 Journal Article TY - JOUR
基于长短周期记忆神经网络的浮式风电机组载荷测量方法机构:1浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058;2运达能源科技集团有限责任公司,中国杭州,310012;3浙江省风力发电技术重点实验室,中国杭州,310012 目的:浮式风电机组在实海况环境下的载荷数据对于结构降成本优化设计至关重要,但难以直接通过测量获取。本文旨在采用机器学习方法建立载荷黑箱模型,通过测量平台运动状态、波浪状态和系泊张力,实现对平台水动载荷、机组气动载荷的计算。 创新点:1.基于计算流体力学(CFD)仿真数据,训练了一套以波高序列、平台运动为输入,平台水动载荷为输出的长短周期记忆神经网络模型;2.建立浮式风电机组缩比模型,完成机组载荷测量实验。 方法:1.通过理论分析,推导出机组气动载荷和平台水动载荷之间的关系,得到机组载荷测量方案(图1);2.通过CFD仿真模拟,分析平台水动载荷影响因素,并获取大量样本数据(图7);3.通过模型实验,运用传感器对波高序列、平台运动和塔顶气动载荷进行测量,验证所提方法的可行性和有效性(图14)。 结论:1.最佳神经网络模型参数是两层网络单元,且每层128个神经元;2.模型实验测量中,水动载荷测量的均方根误差是4.20%,而机组气动载荷测量的均方根误差是10.68%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BarooniM, AshuriT, Velioglu SogutD, et al., 2023. Floating offshore wind turbines: current status and future prospects. Energies, 16(1):2. ![]() [2]ChenJH, HuZQ, LiuGL, et al., 2019. Coupled aero-hydro-servo-elastic methods for floating wind turbines. Renewable Energy, 130:139-153. ![]() [3]ChenP, JiaCJ, NgC, et al., 2021. Application of SADA method on full-scale measurement data for dynamic responses prediction of Hywind floating wind turbines. Ocean Engineering, 239:109814. ![]() [4]CiuriucA, RaphaJI, GuancheR, et al., 2022. Digital tools for floating offshore wind turbines (FOWT): a state of the art. Energy Reports, 8:1207-1228. ![]() [5]DaiJC, HuW, YangX, et al., 2018. Modeling and investigation of load and motion characteristics of offshore floating wind turbines. Ocean Engineering, 159:187-200. ![]() [6]FengXH, FangJY, LinYG, et al., 2023a. Coupled aero-hydro-mooring dynamic analysis of floating offshore wind turbine under blade pitch motion. Physics of Fluids, 35(4):045131. ![]() [7]FengXH, LinYG, GuYJ, et al., 2023b. Preliminary stability design method and hybrid experimental validation of a floating platform for 10MW wind turbine. Ocean Engineering, 285:115401. ![]() [8]JiangX, DayS, ClellandD, et al., 2019. Analysis and real-time prediction of the full-scale thrust for floating wind turbine based on artificial intelligence. Ocean Engineering, 175:207-216. ![]() [9]LiL, GaoZ, YuanZM, 2019. On the sensitivity and uncertainty of wave energy conversion with an artificial neural-network-based controller. Ocean Engineering, 183:282-293. ![]() [10]LiYJ, LiW, LiuHW, et al., 2020. Indirect load measurements for large floating horizontal-axis tidal current turbines. Ocean Engineering, 198:106945. ![]() [11]LiuYC, LiSW, YiQ, et al., 2016. Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review. Renewable and Sustainable Energy Reviews, 60:433-449. ![]() [12]MaG, JinCL, WangHW, et al., 2023. Study on dynamic tension estimation for the underwater soft yoke mooring system with LSTM-AM neural network. Ocean Engineering, 267:113287. ![]() [13]MaesK, IliopoulosA, WeijtjensW, et al., 2016. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms. Mechanical Systems and Signal Processing, 76-77:592-611. ![]() [14]MicallefD, RezaeihaA, 2021. Floating offshore wind turbine aerodynamics: trends and future challenges. Renewable and Sustainable Energy Reviews, 152:111696. ![]() [15]NoppeN, WeijtjensW, DevriendtC, 2018. Modeling of quasi-static thrust load of wind turbines based on 1 s SCADA data. Wind Energy Science, 3(1):139-147. ![]() [16]PahnT, RolfesR, JonkmanJ, 2017. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure. Wind Energy, 20(7):1171-1186. ![]() [17]Pegalajar-JuradoA, BredmoseH, BorgM, et al., 2018. State-of-the-art model for the LIFES50+ OO-Star wind floater semi 10 MW floating wind turbine. Journal of Physics: Conference Series, 1104:012024. ![]() [18]RenZR, ZhouHY, LiBB, et al., 2022. Localization and topological observability analysis of a moored floating structure using mooring line tension measurements. Ocean Engineering, 266:112706. ![]() [19]RoddierD, CermelliC, AubaultA, et al., 2010. WindFloat: a floating foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy, 2(3):33104. ![]() [20]SongMM, ChristensenS, MoaveniB, et al., 2022. Joint parameter-input estimation for virtual sensing on an offshore platform using output-only measurements. Mechanical Systems and Signal Processing, 170:108814. ![]() [21]WangZM, QiaoDS, YanJ, et al., 2022a. A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure. Ocean Engineering, 249:110905. ![]() [22]WangZM, QiaoDS, TangGQ, et al., 2022b. An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system. Ocean Engineering, 261:112105. ![]() [23]WenBR, DongXJ, TianXL, et al., 2018. The power performance of an offshore floating wind turbine in platform pitching motion. Energy, 154:508-521. ![]() [24]YangC, ChenP, ChengZS, et al., 2023. Aerodynamic damping of a semi-submersible floating wind turbine: an analytical, numerical and experimental study. Ocean Engineering, 281:114826. ![]() [25]YangY, PengT, LiaoSJ, 2023. Predicting 3-DoF motions of a moored barge by machine learning. Journal of Ocean Engineering and Science, 8(4):336-343. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>