Full Text:  <1301>

Suppl. Mater.: 

Summary:  <214>

CLC number: 

On-line Access: 2022-02-17

Received: 2021-05-23

Revision Accepted: 2021-08-15

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2231

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xue ZOU

https://orcid.org/0000-0001-9540-6764

Pei WANG

https://orcid.org/0000-0002-8613-6480

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Analysis of volatile organic compounds in exhaled breath after radiotherapy


Author(s):  Dianlong GE, Xue ZOU, Yajing CHU, Jijuan ZHOU, Wei XU, Yue LIU, Qiangling ZHANG, Yan LU, Lei XIA, Aiyue LI, Chaoqun HUANG, Pei WANG, Chengyin SHEN, Yannan CHU

Affiliation(s):  Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; more

Corresponding email(s):  xzou@cmpt.ac.cn, 61775618@qq.com

Key Words:  Radiotherapy; Breatht; Volatile organic compounds; GC-MS


Share this article to: More <<< Previous Paper|Next Paper >>>

Dianlong GE, Xue ZOU, Yajing CHU, Jijuan ZHOU, Wei XU, Yue LIU, Qiangling ZHANG, Yan LU, Lei XIA, Aiyue LI, Chaoqun HUANG, Pei WANG, Chengyin SHEN, Yannan CHU. Analysis of volatile organic compounds in exhaled breath after radiotherapy[J]. Journal of Zhejiang University Science B, 2022, 23(5): 153-157.

@article{title="Analysis of volatile organic compounds in exhaled breath after radiotherapy",
author="Dianlong GE, Xue ZOU, Yajing CHU, Jijuan ZHOU, Wei XU, Yue LIU, Qiangling ZHANG, Yan LU, Lei XIA, Aiyue LI, Chaoqun HUANG, Pei WANG, Chengyin SHEN, Yannan CHU",
journal="Journal of Zhejiang University Science B",
volume="23",
number="2",
pages="153-157",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2100447"
}

%0 Journal Article
%T Analysis of volatile organic compounds in exhaled breath after radiotherapy
%A Dianlong GE
%A Xue ZOU
%A Yajing CHU
%A Jijuan ZHOU
%A Wei XU
%A Yue LIU
%A Qiangling ZHANG
%A Yan LU
%A Lei XIA
%A Aiyue LI
%A Chaoqun HUANG
%A Pei WANG
%A Chengyin SHEN
%A Yannan CHU
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 2
%P 153-157
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer

TY - JOUR
T1 - Analysis of volatile organic compounds in exhaled breath after radiotherapy
A1 - Dianlong GE
A1 - Xue ZOU
A1 - Yajing CHU
A1 - Jijuan ZHOU
A1 - Wei XU
A1 - Yue LIU
A1 - Qiangling ZHANG
A1 - Yan LU
A1 - Lei XIA
A1 - Aiyue LI
A1 - Chaoqun HUANG
A1 - Pei WANG
A1 - Chengyin SHEN
A1 - Yannan CHU
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 2
SP - 153
EP - 157
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -


Abstract: 
Radiotherapy uses high-energy X-rays or other particles to destroy cancer cells and medical practitioners have used this approach extensively for cancer treatment (Hachadorian et al., 2020). However, it is accompanied by risks because it seriously harms normal cells while killing cancer cells. The side effects can lower cancer patients' quality of life and are very unpredictable due to individual differences (Bentzen, 2006). Therefore, it is essential to assess a patient's body damage after radiotherapy to formulate an individualized recovery treatment plan. Exhaled volatile organic compounds (VOCs) can be changed by radiotherapy and thus used for medical diagnosis (Vaks et al., 2012). During treatment, high-energy X-rays can induce apoptosis; meanwhile, cell membranes are damaged due to lipid peroxidation, converting unsaturated fatty acids into volatile metabolites (Losada-Barreiro and Bravo-Díaz, 2017). At the same time, radiotherapy oxidizes water, resulting in reactive oxygen species (ROS) that can increase the epithelial permeability of pulmonary alveoli, enabling the respiratory system to exhale volatile metabolites (Davidovich et al., 2013; Popa et al., 2020). These exhaled VOCs can be used to monitor body damage caused by radiotherapy.

放射治疗后呼气中挥发性有机物的分析

概要:放射治疗具有一定风险,主要是因为其在杀死癌细胞的同时可对正常细胞造成严重损伤。呼气中的挥发性有机化合物(VOCs)可以提供人体内生理以及病理相关过程的信息,具有监测机体损伤的潜力。本研究收集了10名肺癌患者的110份呼气样本,使用固相微萃取气相色谱-质谱技术(SPME-GC/MS)进行检测。通过热图分析可发现28种VOCs(包括芳香族化合物、烷烃、醛类、酸类、酮类、醇类和酯类)在放疗后6小时内发生规律性的变化。通过对放疗前后0.5小时的呼气样本进行Mann-WhitneyU检验和正交偏最小二乘判别分析(OPLS-DA),丙酸、三乙酸甘油酯和吲哚可被确定为放疗的呼气标志物。所建立的OPLS-DA模型的预测优度参数Q2为0.53,显示出良好的预测能力。综上所述,呼气VOCs可用于监测放射治疗造成的机体损伤,有助于制定个体化治疗方案。

关键词组:放射治疗;呼气;挥发性有机物;气相色谱质谱;生物标志物

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BentzenSM, 2006. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer, 6(9):702-713.

[2]BroinPÓ, VaitheesvaranB, SahaS, et al., 2015. Intestinal microbiota-derived metabolomic blood plasma markers for prior radiation injury. Int J Radiat Oncol Biol Phys, 91(2):360-367.

[3]ChungYH, TsaiCK, WangCC, et al., 2017. Early response monitoring following radiation therapy by using [18F]FDG and [11C]acetate PET in prostate cancer xenograft model with metabolomics corroboration. Molecules, 22(11):1946.

[4]DavidovichN, DiPaoloBC, LawrenceGG, et al., 2013. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am J Respir Cell Mol Biol, 49(1):156-164.

[5]de VietroN, ArestaA, RotelliMT, et al., 2020. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J Pharm Biomed Anal, 180:113055.

[6]GambhirKK, McMenamyRH, WatsonF, 1975. Positions in human serum albumin which involve the indole binding site. Sequence of 107-residue fragment. J Biol Chem, 250(17):6711-6719.

[7]HachadorianRL, BruzaP, JermynM, et al., 2020. Imaging radiation dose in breast radiotherapy by X-ray CT calibration of Cherenkov light. Nat Commun, 11:2298.

[8]KirilovaEM, KalninaI, ZvaguleT, et al., 2011. Fluorescent study of human blood plasma albumin alterations induced by ionizing radiation. J Fluoresc, 21(3):923-927.

[9]LinJ, 2004. Too much short chain fatty acids cause neonatal necrotizing enterocolitis. Med Hypotheses, 62(2):291-293.

[10]LongPM, TigheSW, DriscollHE, et al., 2015. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol, 230(8):1929-1943.

[11]Losada-BarreiroS, Bravo-DíazC, 2017. Free radicals and polyphenols: the redox chemistry of neurodegenerative diseases. Eur J Med Chem, 133:379-402.

[12]McKelveyKJ, HudsonAL, BackM, et al., 2018. Radiation, inflammation and the immune response in cancer. Mamm Genome, 29(11):843-865.

[13]NakajimaT, 2015. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: responses to radiation exposure. Med Sci Monit, 21:1721-1725.

[14]PhillipsM, ByrnesR, CataneoRN, et al., 2013. Detection of volatile biomarkers of therapeutic radiation in breath. J Breath Res, 7(3):036002.

[15]PopaC, Maia BratuA, PetrusM, 2020. Special issue “applications of photoacoustic spectroscopy”. Molecules, 25(21):5116.

[16]ReisenauerCJ, BhattDP, MittenessDJ, et al., 2011. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation. J Neurochem, 117(2):264-274.

[17]SemenzaGL, 2011. Oxygen sensing, homeostasis, and disease. N Engl J Med, 365(6):537-547.

[18]VaksVL, DomrachevaEG, SobakinskayaEA, et al., 2012. Using the methods and facilities of nonsteady-state spectroscopy of the subterahertz and terahertz frequency ranges for noninvasive medical diagnosis. J Opt Technol, 79(2):66-69.

[19]WangCS, DongR, WangXY, et al., 2014. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci Rep, 4:7312.

[20]ZhongJ, RajaramN, BrizelDM, et al., 2013. Radiation induces aerobic glycolysis through reactive oxygen species. Radiother Oncol, 106(3):390-396.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE