CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-06-24
Cited: 0
Clicked: 1289
Miao CHU, Guangdong CHEN, Kai CHEN, Pengfei ZHU, Zhen WANG, Zhonglai QIAN, Huaqiang TAO, Yaozeng XU, Dechun GENG. Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300303 @article{title="Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis", %0 Journal Article TY - JOUR
血红素加氧酶1与骨关节炎软骨下破骨细胞失活的相关研究1苏州大学第一附属医院骨科,中国苏州市,215006 2宜兴市人民医院骨科,中国宜兴市,214299 3海安人民医院骨科,中国海安市,226600 4上海交通大学医学院附属苏州九龙医院骨科,中国苏州市,215028 摘要:骨关节炎(OA)是一种老年慢性进行性骨关节病。破骨细胞活化在早期骨关节炎软骨下骨丢失的发生中起着至关重要的作用。然而,骨性关节炎中破骨细胞分化的具体机制尚不清楚。在本研究中,从基因表达综合库(GEO)中筛选了与OA疾病进展和破骨细胞活化相关的基因表达谱。采用GEO2R和Funrich分析工具寻找差异表达基因(DEGs)。富集分析结果表明,化学致癌作用、活性氧和氧化应激反应主要参与OA软骨下骨的破骨细胞分化。此外,还鉴定了14个与氧化应激相关的DEGs。选择排名第一的差异基因血红素加氧酶1(HMOX1)进行进一步验证。相关结果显示,OA软骨下骨破骨细胞活化过程中伴随着HMOX1的下调。在体外实验中发现,鼠尾草酚通过靶向HMOX1,上调抗氧化蛋白的表达来抑制破骨细胞的形成。同时,在体内发现鼠尾草酚通过抑制软骨下骨破骨细胞的激活来减轻OA的严重程度。综上所述,软骨下骨氧化还原失稳态引起的破骨细胞活化是骨性关节炎进展的重要途径。在软骨下破骨细胞中靶向HMOX1可为早期OA的治疗提供新的见解。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbramoffB, CalderaFE, 2020. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 104(2):293-311. ![]() [2]AgidigbiTS, KimC, 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci, 20(14):3576. ![]() [3]AlmeidaM, PorterRM, 2019. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 121:284-292. ![]() [4]AndreevD, LiuMD, WeidnerD, et al., 2020. Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest, 130(9):4811-4830. ![]() [5]ApelK, HirtH, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55:373-399. ![]() [6]BijlsmaJW, BerenbaumF, LafeberFP, 2011. Osteoarthritis: an update with relevance for clinical practice. Lancet, 377(9783):2115-2126. ![]() [7]BoyceBF, 2013. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res, 92(10):860-867. ![]() [8]BoyleWJ, SimonetWS, LaceyDL, 2003. Osteoclast differentiation and activation. Nature, 423(6937):337-342. ![]() [9]CaiP, YanSC, LuY, et al., 2022. Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL-induced NF-κB signaling pathway. Mol Med Rep, 26:225. ![]() [10]CapparielloA, MauriziA, VeeriahV, et al., 2014. The great beauty of the osteoclast. Arch Biochem Biophys, 558:70-78. ![]() [11]ChenYZ, LuJW, LiSH, et al., 2020. Carnosol attenuates RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss. Int Immunopharmacol, 89:106978. ![]() [12]CuiZ, CraneJ, XieH, et al., 2016. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis, 75(9):1714-1721. ![]() [13]DrissiH, SanjayA, 2016. The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem, 117(8):1753-1756. ![]() [14]GlassonSS, BlanchetTJ, MorrisEA, 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage, 15(9):1061-1069. ![]() [15]Glyn-JonesS, PalmerAJR, AgricolaR, et al., 2015. Osteoarthritis. Lancet, 386(9991):376-387. ![]() [16]GuoYN, CuiSJ, TianYJ, et al., 2022. Chondrocyte apoptosis in temporomandibular joint osteoarthritis promotes bone resorption by enhancing chemotaxis of osteoclast precursors. Osteoarthritis Cartilage, 30(8):1140-1153. ![]() [17]HuSL, ZhangCW, NiLB, et al., 2020. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis, 11(6):481. ![]() [18]HuWH, ChenYQ, DouC, et al., 2021. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis, 80(4):413-422. ![]() [19]KarsdalMA, Bay-JensenAC, LoriesRJ, et al., 2014. The coup ![]() [20]ling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis, 73(2):336-348. ![]() [21]KimMJ, KimHS, LeeS, et al., 2021. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int J Mol Sci, 22(16):8888. ![]() [22]KimballJS, JohnsonJP, CarlsonDA, 2021. Oxidative stress and osteoporosis. J Bone Jt Surg, 103(15):1451-1461. ![]() [23]LepetsosP, PapavassiliouKA, PapavassiliouAG, 2019. Redox and NF-κB signaling in osteoarthritis. Free Radical Biol Med, 132:90-100. ![]() [24]LiB, ChenKZ, QianND, et al., 2021. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med, 25(11):5283-5294. ![]() [25]LiGY, YinJM, GaoJJ, et al., 2013. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther, 15(6):223. ![]() [26]LiuXH, JiCX, XuL, et al., 2018. Hmox1 promotes osteogenic differentiation at the expense of reduced adipogenic differentiation induced by BMP9 in C3H10T1/2 cells. J Cell Biochem, 119(7):5503-5516. ![]() [27]LoeserRF, OlexAL, McNultyMA, et al., 2013. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS ONE, 8:e54633. ![]() [28]Martel-PelletierJ, BarrAJ, CicuttiniFM, et al., 2016. Osteoarthritis. Nat Rev Dis Primers, 2:16072. ![]() [29]PereiraM, PetrettoE, GordonS, et al., 2018. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci, 131(11):jcs216267. ![]() [30]SakamotoH, SakaiE, FumimotoR, et al., 2012. Deltamethrin inhibits osteoclast differentiation via regulation of heme oxygenase-1 and NFATc1. Toxicol Vitro, 26(6):817-822. ![]() [31]SchipperHM, SongW, TavitianA, et al., 2019. The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol, 172:40-70. ![]() [32]ShenC, GaoM, ChenHM, et al., 2021. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnol, 19:395. ![]() [33]ShiYF, ChenJX, LiSL, et al., 2022. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. Phytomedicine, 98:153928. ![]() [34]SuWP, LiuGQ, MohajerB, et al., 2022. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife, 11:e79773. ![]() [35]TaoHQ, LiWM, ZhangW, et al., 2021. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways. Pharmacol Res, 174:105967. ![]() [36]TateiwaD, YoshikawaH, KaitoT, 2019. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review. Cells, 8(8):818. ![]() [37]WangG, WangYN, YangQZ, et al., 2022. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis, 13:29. ![]() [38]WangXY, YamauchiK, MitsunagaT, 2020. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia, 142:104482. ![]() [39]XiaBJ, ChenD, ZhangJS, et al., 2014. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int, 95(6):495-505. ![]() [40]YamaguchiY, SakaiE, SakamotoH, et al., 2014. Inhibitory effects of tert-butylhydroquinone on osteoclast differentiation via up-regulation of heme oxygenase-1 and down-regulation of HMGB1 release and NFATc1 expression. J Appl Toxicol, 34(1):49-56. ![]() [41]YangC, TaoHQ, ZhangHF, et al., 2022. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy, 18(12):2817-2829. ![]() [42]ZhuCY, ShenSW, ZhangSH, et al., 2022. Autophagy in bone remodeling: a regulator of oxidative stress. Front Endocrinol, 13:898634. ![]() [43]ZhuSA, ZhuJX, ZhenGH, et al., 2019. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest, 129(3):1076-1093. ![]() [44]ZhuXB, ChanYT, YungPSH, et al., 2021. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol, 8:607764. ![]() [45]ZorovDB, JuhaszovaM, SollottSJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>