CLC number:
On-line Access: 2025-06-25
Received: 2023-12-11
Revision Accepted: 2024-04-24
Crosschecked: 2025-06-25
Cited: 0
Clicked: 1178
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0007-2278-7886
https://orcid.org/0009-0004-7095-1116
Zhiyuan PAN, Guofen LIN, Hao LIU, Guozhi LI, Xiaoyi ZHANG, Jiewen DAI. Mechanisms of ribosomopathy and phase separation-related ribosomopathy[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300904 @article{title="Mechanisms of ribosomopathy and phase separation-related ribosomopathy", %0 Journal Article TY - JOUR
核糖体病和相分离相关核糖体病的机制1上海交通大学医学院附属第九人民医院口腔颅颌面科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,中国上海市,200011 2浙江大学医学院附属口腔医院,浙江大学口腔医学院,浙江省口腔疾病临床医学研究中心,浙江省口腔生物医学研究重点实验室, 浙江大学癌症研究院,口腔生物材料与器械浙江省工程研究中心,中国杭州市,310000 3山东第二医科大学口腔医学院,中国潍坊市,261000 4宁波大学附属第一医院整形修复医学中心,中国宁波市,315211 摘要:核糖体是细胞内的核糖核蛋白颗粒,是蛋白质生物合成的场所。编码核糖体蛋白(RP)和核糖体生物发生因子(RBF)的基因突变会导致核糖体功能障碍,从而引发一系列疾病,统称为核糖体病。相分离是一种从均质混合物中产生多相的热力学过程。无膜细胞器和细胞内结构(包括核糖体和核小体)的形成离不开相分离现象的参与。本文系统综述了核糖体的结构、生物发生及其与核糖体病的关系,特别讨论了核糖体病的组织特异性和相分离在其中的作用机制。这些发现为理解核糖体病的发病机理提供重要线索,并为进一步开展核糖体病预防、诊断和治疗提供了新思路。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdulhadi-AtwanM, KlopstockT, SharafM, et al., 2020. The novel R211Q POP1 homozygous mutation causes different pathogenesis and skeletal changes from those of previously reported POP1-associated anauxetic dysplasia. Am J Med Genet A, 182(5):1268-1272. ![]() [2]AchilleosA, TrainorPA, 2015. Mouse models of rare craniofacial disorders. Curr Top Dev Biol, 115:413-458. ![]() [3]AmbekarC, DasB, YegerH, et al., 2010. SBDS-deficiency results in deregulation of reactive oxygen species leading to increased cell death and decreased cell growth. Pediatr Blood Cancer, 55(6):1138-1144. ![]() [4]AmsterdamA, NissenRM, SunZX, et al., 2004. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA, 101(35):12792-12797. ![]() [5]AnK, ZhouJB, XiongY, et al., 2021. Computational studies of the structural basis of human RPS19 mutations associated with Diamond-Blackfan Anemia. Front Genet, 12:650897. ![]() [6]AndersonSJ, LauritsenJPH, HartmanMG, et al., 2007. Ablation of ribosomal protein L22 selectively impairs αβ T cell development by activation of a p53-dependent checkpoint. Immunity, 26(6):759-772. ![]() [7]BaloghE, ChandlerJC, VargaM, et al., 2020. Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci USA, 117(26):15137-15147. ![]() [8]BananiSF, LeeHO, HymanAA, et al., 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18(5):285-298. ![]() [9]Barraza-GarcíaJ, Rivera-PedrozaCI, Hisado-OlivaA, et al., 2017. Broadening the phenotypic spectrum of POP1-skeletal dysplasias: identification of POP1 mutations in a mild and severe skeletal dysplasia. Clin Genet, 92(1):91-98. ![]() [10]BaßlerJ, HurtE, 2019. Eukaryotic ribosome assembly. Annu Rev Biochem, 88:281-306. ![]() [11]BelinS, BeghinA, Solano-GonzàlezE, et al., 2009. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS ONE, 4(9):e7147. ![]() [12]BezzerriV, CipolliM, 2019. Shwachman-Diamond syndrome: molecular mechanisms and current perspectives. Mol Diagn Ther, 23(2):281-290. ![]() [13]BhatP, HonsonD, GuttmanM, 2021. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol, 22(10):653-670. ![]() [14]BoisvertFM, LamondAI, 2010. p53-Dependent subcellular proteome localization following DNA damage. Proteomics, 10(22):4087-4097. ![]() [15]BoisvertFM, van KoningsbruggenS, NavascuésJ, et al., 2007. The multifunctional nucleolus. Nat Rev Mol Cell Biol, 8(7):574-585. ![]() [16]BolzeA, MahlaouiN, ByunM, et al., 2013. Ribosomal protein SA haploinsufficiency in humans with isolated congenital asplenia. Science, 340(6135):976-978. ![]() [17]BoulonS, WestmanBJ, HuttenS, et al., 2010. The nucleolus under stress. Mol Cell, 40(2):216-227. ![]() [18]BoultwoodJ, PellagattiA, McKenzieANJ, et al., 2010. Advances in the 5q- syndrome. Blood, 116(26):5803-5811. ![]() [19]BourqueDK, HartleyT, NikkelSM, et al., 2018. A de novo mutation in RPL10 causes a rare X-linked ribosomopathy characterized by syndromic intellectual disability and epilepsy: a new case and review of the literature. Eur J Med Genet, 61(2):89-93. ![]() [20]BoxJK, PaquetN, AdamsMN, et al., 2016. Nucleophosmin: from structure and function to disease development. BMC Mol Biol, 17:19. ![]() [21]BrooksSS, WallAL, GolzioC, et al., 2014. A novel ribosomopathy caused by dysfunction of RPL10 disrupts neurodevelopment and causes X-linked microcephaly in humans. Genetics, 198(2):723-733. ![]() [22]BurroughsL, WoolfreyA, ShimamuraA, 2009. Shwachman-diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am, 23(2):233-248. ![]() [23]CaiDF, FelicianoD, DongP, et al., 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat Cell Biol, 21(12):1578-1589. ![]() [24]CaiPC, MaoXY, ZhaoJQ, et al., 2018. Ribosome biogenesis protein Urb2 regulates hematopoietic stem cells development via P53 pathway in zebrafish. Biochem Biophys Res Commun, 497(2):776-782. ![]() [25]CaloE, GuB, BowenME, et al., 2018. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature, 554(7690):112-117. ![]() [26]CaoPB, YangAQ, LiPY, et al., 2021. Genomic gain of RRS1 promotes hepatocellular carcinoma through reducing the RPL11-MDM2-p53 signaling. Sci Adv, 7(35):eabf4304. ![]() [27]ChagnonP, MichaudJ, MitchellG, et al., 2002. A missense mutation (R565W) in Cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet, 71(6):1443-1449. ![]() [28]ChakrabortyA, UechiT, HigaS, et al., 2009. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. PLoS ONE, 4(1):e4152. ![]() [29]ChenJ, GuoKX, KastanMB, 2012. Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem, 287(20):16467-16476. ![]() [30]ChenJ, CrutchleyJ, ZhangDD, et al., 2017. Identification of a DNA damage-induced alternative splicing pathway that regulates p53 and cellular senescence markers. Cancer Discov, 7(7):766-781. ![]() [31]ChenXD, WuXD, WuHW, et al., 2020. Phase separation at the synapse. Nat Neurosci, 23(3):301-310. ![]() [32]ChengZ, MuglerCF, KeskinA, et al., 2019. Small and large ribosomal subunit deficiencies lead to distinct gene expression signatures that reflect cellular growth rate. Mol Cell, 73(1):36-47.e10. ![]() [33]da CostaL, LeblancT, MohandasN, 2020. Diamond-Blackfan anemia. Blood, 136(11):1262-1273. ![]() [34]DashS, TrainorPA, 2022. Nucleolin loss of function leads to aberrant fibroblast growth factor signaling and craniofacial anomalies. Development, 149(12):dev200349. ![]() [35]DauwerseJG, DixonJ, SelandS, et al., 2011. Mutations in genes encoding subunits of RNA polymerases I and III cause treacher collins syndrome. Nat Genet, 43(1):20-22. ![]() [36]de KeersmaeckerK, AtakZK, LiN, et al., 2013. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet, 45(2):186-190. ![]() [37]DecaturWA, FournierMJ, 2003. RNA-guided nucleotide modification of ribosomal and other RNAs. J Biol Chem, 278(2):695-698. ![]() [38]de la CruzJ, KarbsteinK, WoolfordJL, 2015. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem, 84:93-129. ![]() [39]DelhermiteJ, TafforeauL, SharmaS, et al., 2022. Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. PLoS Genet, 18(1):e1010012. ![]() [40]DhariaAP, OblaA, GajdosikMD, et al., 2014. Tempo and mode of gene duplication in mammalian ribosomal protein evolution. PLoS ONE, 9(11):e111721. ![]() [41]DixonJ, JonesNC, SandellLL, et al., 2006. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci USA, 103(36):13403-13408. ![]() [42]DixonMJ, 1995. Treacher Collins syndrome. J Med Genet, 32(10):806-808. ![]() [43]DonatiG, BertoniS, BrighentiE, et al., 2011. The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene, 30(29):3274-3288. ![]() [44]DornKM, BurnsKD, TroutMAR, et al., 2021. Diamond-Blackfan anemia: a case report and review of the literature. Neonatology, 118(4):500-504. ![]() [45]DrorY, 2005. Shwachman-Diamond syndrome. Pediatr Blood Cancer, 45(7):892-901. ![]() [46]DrouinE, RussoP, TuchweberB, et al., 2000. North American Indian cirrhosis in children: a review of 30 cases. J Pediatr Gastroenterol Nutr, 31(4):395-404. ![]() [47]DuttS, NarlaA, LinK, et al., 2011. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood, 117(9):2567-2576. ![]() [48]EarJ, HsuehJ, NguyenM, et al., 2016. A zebrafish model of 5q-syndrome using CRISPR/Cas9 targeting RPS14 reveals a p53-independent and p53-dependent mechanism of erythroid failure. J Genet Genomics, 43(5):307-318. ![]() [49]EbertBL, PretzJ, BoscoJ, et al., 2008. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature, 451(7176):335-339. ![]() [50]ElalaouiSC, LaarabiFZ, MansouriM, et al., 2016. Further evidence of POP1 mutations as the cause of anauxetic dysplasia. Am J Med Genet A, 170(9):2462-2465. ![]() [51]EngelandK, 2018. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ, 25(1):114-132. ![]() [52]FalconKT, WattKEN, DashS, et al., 2022. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc Natl Acad Sci USA, 119(31):e2116974119. ![]() [53]Farley-BarnesKI, OgawaLM, BasergaSJ, 2019. Ribosomopathies: old concepts, new controversies. Trends Genet, 35(10):754-767. ![]() [54]FarrarJE, VlachosA, AtsidaftosE, et al., 2011. Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood, 118(26):6943-6951. ![]() [55]FengLF, DuJ, YaoCJ, et al., 2020. Ribosomal DNA copy number is associated with p53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients. Environ Int, 138:105593. ![]() [56]FericM, VaidyaN, HarmonTS, et al., 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell, 165(7):1686-1697. ![]() [57]FerrettiMB, KarbsteinK, 2019. Does functional specialization of ribosomes really exist? RNA, 25(5):521-538. ![]() [58]FerrettiMB, GhaleiH, WardEA, et al., 2017. Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nat Struct Mol Biol, 24(9):700-707. ![]() [59]FilbeckS, CerulloF, PfefferS, et al., 2022. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell, 82(8):1451-1466. ![]() [60]FlygareJ, KarlssonS, 2007. Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood, 109(8):3152-3154. ![]() [61]FreedEF, PrietoJL, McCannKL, et al., 2012. NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing. PLoS Genet, 8(8):e1002892. ![]() [62]FrottinF, SchuederF, TiwaryS, et al., 2019. The nucleolus functions as a phase-separated protein quality control compartment. Science, 365(6451):342-347. ![]() [63]FujiokaY, NodaNN, 2021. Biomolecular condensates in autophagy regulation. Curr Opin Cell Biol, 69:23-29. ![]() [64]GabryelczykB, CaiH, ShiXY, et al., 2019. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat Commun, 10:5465. ![]() [65]GanapathiKA, ShimamuraA, 2008. Ribosomal dysfunction and inherited marrow failure. Br J Haematol, 141(3):376-387. ![]() [66]GayDM, LundAH, JanssonMD, 2022. Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci, 47(1):66-81. ![]() [67]GenuthNR, BarnaM, 2018. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol Cell, 71(3):364-374. ![]() [68]GibsonBA, DoolittleLK, SchneiderMWG, et al., 2019. Organization of chromatin by intrinsic and regulated phase separation. Cell, 179(2):470-484.e21. ![]() [69]GonzalesB, HenningD, SoRB, et al., 2005. The Treacher collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation. Hum Mol Genet, 14(14):2035-2043. ![]() [70]GopanenkoAV, KolobovaAV, TupikinAE, et al., 2021. Knockdown of the ribosomal protein eL38 in HEK293 cells changes the translational efficiency of specific genes. Int J Mol Sci, 22(9):4531. ![]() [71]GriffinJN, SondalleSB, del VisoF, et al., 2015. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. PLoS Genet, 11(3):e1005018. ![]() [72]GrippKW, CurryC, OlneyAH, et al., 2014. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am J Med Genet A, 164(9):2240-2249. ![]() [73]GrzankaM, Piekiełko-WitkowskaA, 2021. The role of TCOF1 gene in health and disease: beyond Treacher Collins syndrome. Int J Mol Sci, 22(5):2482. ![]() [74]Guillen-ChableF, CoronaUR, Pereira-SantanaA, et al., 2020. Fibrillarin ribonuclease activity is dependent on the GAR domain and modulated by phospholipids. Cells, 9(5):1143. ![]() [75]Hernández BorreroLJ, El-DeiryWS, 2021. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer, 1876(1):188556. ![]() [76]Hernandez-VerdunD, RousselP, ThiryM, et al., 2010. The nucleolus: structure/function relationship in RNA metabolism. WIREs RNA, 1(3):415-431. ![]() [77]HindleyA, CatherwoodMA, McMullinMF, et al., 2021. Significance of NPM1 gene mutations in AML. Int J Mol Sci, 22(18):10040. ![]() [78]HiraokaY, 2020. Phase separation drives pairing of homologous chromosomes. Curr Genet, 66(5):881-887. ![]() [79]Holmberg OlaussonK, NistérM, LindströmMS, 2012. P53-dependent and -independent nucleolar stress responses. Cells, 1(4):774-798. ![]() [80]HondeleM, HeinrichS, de Los RiosP, et al., 2020. Membraneless organelles: phasing out of equilibrium. Emerg Top Life Sci, 4(3):343-354. ![]() [81]HunterAGW, WoernerSJ, Montalvo-HicksLDC, et al., 1979. The Bowen-Conradi syndrome—a highly lethal autosomal recessive syndrome of microcephaly, micrognathia, low birth weight, and joint deformities. Am J Med Genet, 3(3):269-279. ![]() [82]IdeS, ImaiR, OchiH, et al., 2020. Transcriptional suppression of ribosomal DNA with phase separation. Sci Adv, 6(42):eabb5953. ![]() [83]IidaT, KobayashiT, 2019. How do cells count multi-copy genes?: “Musical Chair” model for preserving the number of rDNA copies. Curr Genet, 65(4):883-885. ![]() [84]JiaWY, YaoZY, ZhaoJJ, et al., 2017. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci, 186:1-10. ![]() [85]JobeA, LiuZ, Gutierrez-VargasC, et al., 2019. New insights into ribosome structure and function. Cold Spring Harb Perspect Biol, 11(1):a032615. ![]() [86]JonesNC, LynnML, GaudenzK, et al., 2008. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med, 14(2):125-133. ![]() [87]JyonouchiS, ForbesL, RuchelliE, et al., 2011. Dyskeratosis congenita: a combined immunodeficiency with broad clinical spectrum ‒ a single-center pediatric experience. Pediatr Allergy Immunol, 22(3):313-319. ![]() [88]KangJ, BrajanovskiN, ChanKT, et al., 2021. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther, 6:323. ![]() [89]KhatterH, MyasnikovAG, NatchiarSK, et al., 2015. Structure of the human 80S ribosome. Nature, 520(7549):640-645. ![]() [90]KillenMW, StultsDM, AdachiN, et al., 2009. Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Hum Mol Genet, 18(18):3417-3428. ![]() [91]KlauckSM, FelderB, Kolb-KokocinskiA, et al., 2006. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry, 11(12):1073-1084. ![]() [92]KlingeS, Voigts-HoffmannF, LeibundgutM, et al., 2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science, 334(6058):941-948. ![]() [93]KochS, Garcia GonzalezO, AssfalgR, et al., 2014. Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth. Cell Cycle, 13(13):2029-2037. ![]() [94]KondrashovN, PusicA, StumpfCR, et al., 2011. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell, 145(3):383-397. ![]() [95]KovacevicJ, PalmD, JoossD, et al., 2019. Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. Plant Cell Rep, 38(8):937-949. ![]() [96]KwongEML, HoJCH, LauMCC, et al., 2018. Restoration of polr1c in early embryogenesis rescues the type 3 treacher collins syndrome facial malformation phenotype in zebrafish. Am J Pathol, 188(2):336-342. ![]() [97]LafontaineDLJ, RibackJA, BascetinR, et al., 2021. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol, 22(3):165-182. ![]() [98]LawrimoreJ, KolbinD, StantonJ, et al., 2021. The rDNA is biomolecular condensate formed by polymer-polymer phase separation and is sequestered in the nucleolus by transcription and R-loops. Nucleic Acids Res, 49(8):4586-4598. ![]() [99]le GoffS, BoussaidI, FloquetC, et al., 2021. p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood, 137(1):89-102. ![]() [100]LevasseurJ, NysjöJ, SandyR, et al., 2018. Orbital volume and shape in Treacher Collins syndrome. J Cranio-Maxillofac Surg, 46(2):305-311. ![]() [101]LevineAJ, 2020. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer, 20(8):471-480. ![]() [102]LiYM, ZhouY, LiBF, et al., 2020. WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene, 39(13):2741-2755. ![]() [103]LieblMC, HofmannTG, 2021. The role of p53 signaling in colorectal cancer. Cancers, 13(9):2125. ![]() [104]LiuJ, ZhangC, HuWW, et al., 2019. Tumor suppressor p53 and metabolism. J Mol Cell Biol, 11(4):284-292. ![]() [105]LjungströmV, CorteseD, YoungE, et al., 2016. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood, 127(8):1007-1016. ![]() [106]LowryRB, InnesAM, BernierFP, et al., 2003. Bowen-Conradi syndrome: a clinical and genetic study. Am J Med Genet A, 120A(3):423-428. ![]() [107]LyonAS, PeeplesWB, RosenMK, 2021. A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol, 22(3):215-235. ![]() [108]MaiserA, DillingerS, LängstG, et al., 2020. Super-resolution in situ analysis of active ribosomal DNA chromatin organization in the nucleolus. Sci Rep, 10:7462. ![]() [109]MäkitieOM, TapanainenPJ, DunkelL, et al., 2001. Impaired spermatogenesis: an unrecognized feature of cartilage-hair hypoplasia. Ann Med, 33(3):201-205. ![]() [110]MarcelV, GhayadSE, BelinS, et al., 2013. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell, 24(3):318-330. ![]() [111]Marszałek-KrukBA, WójcickiP, DowgierdK, et al., 2021. Treacher Collins syndrome: genetics, clinical features and management. Genes, 12(9):1392. ![]() [112]MatesicD, HaganJB, 2007. Cartilage-hair hypoplasia. Mayo Clin Proc, 82(6):655. ![]() [113]MatsumoriH, WatanabeK, TachiwanaH, et al., 2022. Ribosomal protein L5 facilitates rDNA-bundled condensate and nucleolar assembly. Life Sci Alliance, 5(7):e202101045. ![]() [114]MattijssenS, WeltingTJM, PruijnGJM, 2010. RNase MRP and disease. WIREs RNA, 1(1):102-116. ![]() [115]McGowanKA, LiJZ, ParkCY, et al., 2008. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet, 40(8):963-970. ![]() [116]MensahMA, NiskanenH, MagalhaesAP, et al., 2023. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature, 614(7948):564-571. ![]() [117]MeyerB, WurmJP, KötterP, et al., 2011. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res, 39(4):1526-1537. ![]() [118]MillsEW, GreenR, 2017. Ribosomopathies: there’s strength in numbers. Science, 358(6363):eaan2755. ![]() [119]MirabelloL, MacariER, JessopL, et al., 2014. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 124(1):24-32. ![]() [120]MirabelloL, KhinchaPP, EllisSR, et al., 2017. Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. J Med Genet, 54(6):417-425. ![]() [121]MitreaDM, CikaJA, GuyCS, et al., 2016. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife, 5:e13571. ![]() [122]MorimotoK, LinS, SakamotoK, 2007. The functions of RPS19 and their relationship to Diamond-Blackfan anemia: a review. Mol Genet Metab, 90(4):358-362. ![]() [123]MossT, MarsJC, TremblayMG, et al., 2019. The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Res, 27(1-2):31-40. ![]() [124]NachmaniD, BothmerAH, GrisendiS, et al., 2019. Germline NPM1 mutations lead to altered rRNA 2'-O-methylation and cause dyskeratosis congenita. Nat Genet, 51(10):1518-1529. ![]() [125]NarlaA, EbertBL, 2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood, 115(16):3196-3205. ![]() [126]NelsonJO, WataseGJ, Warsinger-PepeN, et al., 2019. Mechanisms of rDNA copy number maintenance. Trends Genet, 35(10):734-742. ![]() [127]NerurkarP, AltvaterM, GerhardyS, et al., 2015. Eukaryotic ribosome assembly and nuclear export. Int Rev Cell Mol Biol, 319:107-140. ![]() [128]NieminenTT, O'DonohueMF, WuYP, et al., 2014. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology, 147(3):595-598.e5. ![]() [129]NoackWatt KE, AchilleosA, NebenCL, et al., 2016. The roles of RNA polymerase I and III subunits polr1c and polr1d in craniofacial development and in zebrafish models of Treacher Collins syndrome. PLoS Genet, 12(7):e1006187. ![]() [130]NodaNN, WangZ, ZhangH, 2020. Liquid-liquid phase separation in autophagy. J Cell Biol, 219(8):e202004062. ![]() [131]NorrisK, HopesT, AspdenJL, 2021. Ribosome heterogeneity and specialization in development. WIREs RNA, 12(4):e1644. ![]() [132]NottTJ, CraggsTD, BaldwinAJ, 2016. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat Chem, 8(6):569-575. ![]() [133]OhashiR, UmezuH, SatoA, et al., 2020. Frequent germline and somatic single nucleotide variants in the promoter region of the ribosomal RNA gene in Japanese lung adenocarcinoma patients. Cells, 9(11):2409. ![]() [134]OjhaS, MallaS, LyonsSM, 2020. SnoRNPs: functions in ribosome biogenesis. Biomolecules, 10(5):783. ![]() [135]OngJY, TorresJZ, 2020. Phase separation in cell division. Mol Cell, 80(1):9-20. ![]() [136]OrelioC, VerkuijlenP, GeisslerJ, et al., 2009. SBDS expression and localization at the mitotic spindle in human myeloid progenitors. PLoS ONE, 4(9):e7084. ![]() [137]PandaA, YadavA, YeernaH, et al., 2020. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res, 48(13):7079-7098. ![]() [138]PanićL, TamarutS, Sticker-JantscheffM, et al., 2006. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol, 26(23):8880-8891. ![]() [139]PaoliniNA, AttwoodM, SondalleSB, et al., 2017. A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism. Am J Hum Genet, 100(3):506-522. ![]() [140]PedersonT, 2011. The nucleolus. Cold Spring Harb Perspect Biol, 3(3):a000638. ![]() [141]PeñaC, HurtE, PanseVG, 2017. Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol, 24(9):689-699. ![]() [142]PfisterAS, 2019. Emerging role of the nucleolar stress response in autophagy. Front Cell Neurosci, 13:156. ![]() [143]PillaSP, BahadurRP, 2019. Residue conservation elucidates the evolution of r-proteins in ribosomal assembly and function. Int J Biol Macromol, 140:323-329. ![]() [144]PlompRG, van LieshoutMJS, JoostenKFM, et al., 2016. Treacher Collins syndrome: a systematic review of evidence-based treatment and recommendations. Plast Reconstr Surg, 137(1):191-204. ![]() [145]ProvostE, WehnerKA, ZhongXG, et al., 2012. Ribosomal biogenesis genes play an essential and p53-independent role in zebrafish pancreas development. Development, 139(17):3232-3241. ![]() [146]PyoAGT, ZhangYJ, WingreenNS, 2022. Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates. iScience, 25(2):103852. ![]() [147]RablJ, LeibundgutM, AtaideSF, et al., 2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science, 331(6018):730-736. ![]() [148]RiederD, TrajanoskiZ, McNallyJG, 2012. Transcription factories. Front Genet, 3:221. ![]() [149]RobertsonN, ShchepachevV, WrightD, et al., 2022. A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis. Nat Commun, 13:649. ![]() [150]SakaiD, TrainorPA, 2009. Treacher Collins syndrome: unmasking the role of Tcof1/treacle. Int J Biochem Cell Biol, 41(6):1229-1232. ![]() [151]SanchezE, Laplace-BuilhéB, Mau-ThemFT, et al., 2020. POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genet Med, 22(3):547-556. ![]() [152]SchreinerC, KernlB, DietmannP, et al., 2022. The ribosomal protein L5 functions during Xenopus anterior development through apoptotic pathways. Front Cell Dev Biol, 10:777121. ![]() [153]ShiZ, FujiiK, KovaryKM, et al., 2017. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol Cell, 67(1):71-83.e7. ![]() [154]ShigeokaT, KoppersM, WongHHW, et al., 2019. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep, 29(11):3605-3619.e10. ![]() [155]ShinY, BrangwynneCP, 2017. Liquid phase condensation in cell physiology and disease. Science, 357(6357):eaaf4382. ![]() [156]ShinY, ChangYC, LeeDSW, et al., 2018. Liquid nuclear condensates mechanically sense and restructure the genome. Cell, 175(6):1481-1491.e13. ![]() [157]ShubinaMY, ArifulinEA, SorokinDV, et al., 2020. The GAR domain integrates functions that are necessary for the proper localization of fibrillarin (FBL) inside eukaryotic cells. PeerJ, 8:e9029. ![]() [158]SlavovN, SemrauS, AiroldiE, et al., 2015. Differential stoichiometry among core ribosomal proteins. Cell Rep, 13(5):865-873. ![]() [159]SloanKE, WardaAS, SharmaS, et al., 2017. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol, 14(9):1138-1152. ![]() [160]SmallwoodK, WattKEN, IdeS, et al., 2023. POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies. Am J Hum Genet, 110(5):809-825. ![]() [161]SmirnovE, HornáčekM, KováčikL, et al., 2016. Reproduction of the FC/DFC units in nucleoli. Nucleus, 7(2):203-215. ![]() [162]SondalleSB, BasergaSJ, 2014. Human diseases of the SSU processome. Biochim Biophys Acta, 1842(6):758-764. ![]() [163]SpannlS, TereshchenkoM, MastromarcoGJ, et al., 2019. Biomolecular condensates in neurodegeneration and cancer. Traffic, 20(12):890-911. ![]() [164]StrickfadenH, TolsmaTO, SharmaA, et al., 2020. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell, 183(7):1772-1784.e13. ![]() [165]SuQ, MehtaS, ZhangJ, 2021. Liquid-liquid phase separation: orchestrating cell signaling through time and space. Mol Cell, 81(20):4137-4146. ![]() [166]TaokaM, NobeY, YamakiY, et al., 2018. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res, 46(18):9289-9298. ![]() [167]TerrazasK, DixonJ, TrainorPA, et al., 2017. Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. WIREs Dev Biol, 6(3):e263. ![]() [168]ThielCT, MortierG, KaitilaI, et al., 2007. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia-anauxetic dysplasia spectrum. Am J Hum Genet, 81(3):519-529. ![]() [169]ThomasSR, KellerCA, SzykA, et al., 2011. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res, 39(6):2445-2457. ![]() [170]TongDD, ZhangJ, WangXF, et al., 2020. MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis, 9:56. ![]() [171]TourlakisME, ZhangSY, BallHL, et al., 2015. In vivo senescence in the Sbds-deficient murine pancreas: cell-type specific consequences of translation insufficiency. PLoS Genet, 11(6):e1005288. ![]() [172]TsangB, PritišanacI, SchererSW, et al., 2020. Phase separation as a missing mechanism for interpretation of disease mutations. Cell, 183(7):1742-1756. ![]() [173]TseWKF, 2016. Treacher Collins syndrome: new insights from animal models. Int J Biochem Cell Biol, 81:44-47. ![]() [174]TsekrekouM, StratigiK, ChatzinikolaouG, 2017. The nucleolus: in genome maintenance and repair. Int J Mol Sci, 18(7):1411. ![]() [175]TuriZ, SenkyrikovaM, MistrikM, et al., 2018. Perturbation of RNA polymerase I transcription machinery by ablation of HEATR1 triggers the RPL5/RPL11-MDM2-p53 ribosome biogenesis stress checkpoint pathway in human cells. Cell Cycle, 17(1):92-101. ![]() [176]UverskyVN, 2017. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol, 44:18-30. ![]() [177]VakkilainenS, TaskinenM, MäkitieO, 2020. Immunodeficiency in cartilage-hair hypoplasia: pathogenesis, clinical course and management. Scand J Immunol, 92(4):e12913. ![]() [178]van SluisM, McStayB, 2017. Nucleolar reorganization in response to rDNA damage. Curr Opin Cell Biol, 46:81-86. ![]() [179]VenturiG, MontanaroL, 2020. How altered ribosome production can cause or contribute to human disease: the spectrum of ribosomopathies. Cells, 9(10):2300. ![]() [180]VulliamyT, BeswickR, KirwanM, et al., 2008. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA, 105(23):8073-8078. ![]() [181]VulliamyTJ, DokalI, 2008. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie, 90(1):122-130. ![]() [182]WangB, ZhangL, DaiT, et al., 2021. Liquid‒liquid phase separation in human health and diseases. Signal Transduct Target Ther, 6:290. ![]() [183]WangM, LemosB, 2017. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet, 13(9):e1006994. ![]() [184]WardaAS, FreytagB, HaagS, et al., 2016. Effects of the Bowen-Conradi syndrome mutation in EMG1 on its nuclear import, stability and nucleolar recruitment. Hum Mol Genet, 25(24):5353-5364. ![]() [185]WarrenAJ, 2018. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul, 67:109-127. ![]() [186]WattKEN, NebenCL, HallS, et al., 2018. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis-Cincinnati type. Hum Mol Genet, 27(15):2628-2643. ![]() [187]WeisF, GiudiceE, ChurcherM, et al., 2015. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol, 22(11):914-919. ![]() [188]WelshTJ, ShenY, LevinA, et al., 2018. Mechanobiology of protein droplets: force arises from disorder. Cell, 175(6):1457-1459. ![]() [189]WilsonDN, Doudna CateJH, 2012. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol, 4(5):a011536. ![]() [190]WlodarskiMW, da CostaL, O'DonohueMF, et al., 2018. Recurring mutations in RPL15 are linked to hydrops fetalis and treatment independence in Diamond-Blackfan anemia. Haematologica, 103(6):949-958. ![]() [191]WuDY, PrivesC, 2018. Relevance of the p53‒MDM2 axis to aging. Cell Death Differ, 25(1):169-179. ![]() [192]WuM, XuG, HanC, et al., 2021. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription. Science, 373(6554):547-555. ![]() [193]WurmJP, MeyerB, BahrU, et al., 2010. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res, 38(7):2387-2398. ![]() [194]XiaJ, MillerCA, BatyJ, et al., 2018. Somatic mutations and clonal hematopoiesis in congenital neutropenia. Blood, 131(4):408-416. ![]() [195]XuBS, LiH, PerryJM, et al., 2017. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet, 13(6):e1006771. ![]() [196]XueSF, BarnaM, 2012. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol, 13(6):355-369. ![]() [197]XueSF, TianSQ, FujiiK, et al., 2015. RNA regulons in Hox 5' UTRs confer ribosome specificity to gene regulation. Nature, 517(7532):33-38. ![]() [198]YaoRW, XuG, WangY, et al., 2019. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol Cell, 76(5):767-783.e11. ![]() [199]YuL, LemayP, LudlowA, et al., 2021. A new murine Rpl5 (uL18) mutation provides a unique model of variably penetrant Diamond-Blackfan anemia. Blood Adv, 5(20):4167-4178. ![]() [200]ZengML, ShangY, ArakiY, et al., 2016. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 166(5):1163-1175.e12. ![]() [201]ZhangH, JiX, LiPL, et al., 2020. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci, 63(7):953-985. ![]() [202]ZhaoCT, AndreevaV, GibertY, et al., 2014. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development. PLoS Genet, 10(1):e1004074. ![]() [203]ZhaoYG, ZhangH, 2020. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev Cell, 55(1):30-44. ![]() [204]ZhouX, LiaoWJ, LiaoJM, et al., 2015a. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol, 7(2):92-104. ![]() [205]ZhouX, HaoQ, ZhangQ, et al., 2015b. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ, 22(5):755-766. ![]() [206]ZhuYQ, WangY, TaoBX, et al., 2022. Nucleolar GTPase Bms1 displaces Ttf1 from RFB-sites to balance progression of rDNA transcription and replication. J Mol Cell Biol, 13(12):902-917. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>