Full Text:   <2424>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2827

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.4 P.818-832

http://doi.org/10.1007/s42242-021-00153-4


3D printing ofpatient?specifc implants forosteochondral defects: workfow foranMRI?guided zonal design


Author(s):  DavidKilian, PhilippSembdner, HenrietteBretschneider, TilmanAhlfeld, LydiaMika, JrgLtzner, StefanHoltzhausen, AnjaLode, RalphStelzer, MichaelGelinsky

Affiliation(s):  Centre forTranslational Bone, Joint andSoft Tissue Research, University Hospital Carl Gustav Carus andFaculty ofMedicine, Technische Universitt Dresden, Dresden, Germany; more

Corresponding email(s):   michael.gelinsky@tu-dresden.de

Key Words:  Additive manufacturing (AM), Magnetic resonance imaging (MRI), Computer-aided design (CAD), Osteochondritis dissecans (OCD), Bone cement, Hydrogel


Share this article to: More

DavidKilian, PhilippSembdner, HenrietteBretschneider, TilmanAhlfeld, LydiaMika, JrgLtzner, StefanHoltzhausen, AnjaLode, RalphStelzer, MichaelGelinsky. 3D printing ofpatient?specifc implants forosteochondral defects: workfow foranMRI?guided zonal design[J]. Journal of Zhejiang University Science D, 2021, 4(4): 818-832.

@article{title="3D printing ofpatient?specifc implants forosteochondral defects: workfow foranMRI?guided zonal design",
author="DavidKilian, PhilippSembdner, HenrietteBretschneider, TilmanAhlfeld, LydiaMika, JrgLtzner, StefanHoltzhausen, AnjaLode, RalphStelzer, MichaelGelinsky",
journal="Journal of Zhejiang University Science D",
volume="4",
number="4",
pages="818-832",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-021-00153-4"
}

%0 Journal Article
%T 3D printing ofpatient?specifc implants forosteochondral defects: workfow foranMRI?guided zonal design
%A DavidKilian
%A PhilippSembdner
%A HenrietteBretschneider
%A TilmanAhlfeld
%A LydiaMika
%A JrgLtzner
%A StefanHoltzhausen
%A AnjaLode
%A RalphStelzer
%A MichaelGelinsky
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 4
%P 818-832
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00153-4

TY - JOUR
T1 - 3D printing ofpatient?specifc implants forosteochondral defects: workfow foranMRI?guided zonal design
A1 - DavidKilian
A1 - PhilippSembdner
A1 - HenrietteBretschneider
A1 - TilmanAhlfeld
A1 - LydiaMika
A1 - JrgLtzner
A1 - StefanHoltzhausen
A1 - AnjaLode
A1 - RalphStelzer
A1 - MichaelGelinsky
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 4
SP - 818
EP - 832
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00153-4


Abstract: 
magnetic resonance imaging (MRI) is a common clinical practice to visualize defects and to distinguish diferent tissue types and pathologies in the human body. So far, MRI data have not been used to model and generate a patient-specifc design of multilayered tissue substitutes in the case of interfacial defects. For orthopedic cases that require highly individual surgical treatment, implant fabrication by additive manufacturing holds great potential. Extrusion-based techniques like 3D plotting allow the spatially defned application of several materials, as well as implementation of bioprinting strategies. With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans (OCD) patient, this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on different biomaterial inks. A workfow was developed which covers the processing steps of MRI-based defect identifcation, segmentation, modeling, implant design adjustment, and implant generation. A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting, the direct embedding of a patients own cells in the printing process. As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography (SLA) model of lesioned femoral condyles, a novel versatile CAD/CAM workfow was successfully established that opens up new perspectives for the treatment of multi-zonal (osteochondral) defects.

德累斯顿工业大学Michael Gelinsky等 | 3D打印针对骨软骨缺损的患者特定植入物:磁共振成像引导的区域设计流程

本研究论文聚焦以医疗影像手段为基础的骨植入物3D打印研究。磁共振成像(MRI)是一种常见的临床诊断手段,用于可视化缺陷并区分人体中的不同组织类型和病理。到目前为止,MRI数据尚未用于在界面缺损的情况下建模和生成多层组织替代物的患者特异性设计。对于需要高度个性化手术治疗的骨科病例,通过增材制造技术制造植入物进行治疗具有巨大潜力。基于挤出打印技术,可以在空间上对多种材料进行排布,从而进行生物3D打印。以剥脱性骨软骨炎(OCD)患者的典型多带骨软骨缺损为例,本研究旨在缩小MRI分析与基于不同生物墨水的植入物增材制造工艺之间的技术差距。本研究提出了一个工作流程,涵盖了基于MRI的缺陷识别、分割、建模、种植体设计调整和种植体生成的处理步骤。基于两种具有临床相关特性的生物墨水制造了模型植入物,并载入患者自体细胞。本研究采用立体光刻(SLA)技术打印了变股骨髁模型,证明了本文提出的设计和制造的模型植入物的几何兼容性,从而成功建立了一种新的多功能CAD / CAM工作流程,为治疗多区域(骨软骨)缺损开辟了新的视角。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE