CLC number: TP24
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-12-30
Cited: 11
Clicked: 9120
Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(2): 166-172.
@article{title="Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking",
author="Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="2",
pages="166-172",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1400183"
}
%0 Journal Article
%T Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking
%A Hamza Khan
%A Jamshed Iqbal
%A Khelifa Baizid
%A Teresa Zielinska
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 2
%P 166-172
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1400183
TY - JOUR
T1 - Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking
A1 - Hamza Khan
A1 - Jamshed Iqbal
A1 - Khelifa Baizid
A1 - Teresa Zielinska
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 2
SP - 166
EP - 172
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1400183
Abstract: This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.
This paper researches on the trajectory tracking problem for longitudinal and lateral slip control of autonomous wheeled mobile robots. This problem is very interesting and the paper is well organized.
[1]Adrian, L.R., Ribickis, L., 2013. Fuzzy logic analysis of photovoltaic data for obstacle avoidance or mapping robot. Elektron. Elektrotech., 19(1):3-6.
[2]Ahmad, O., Ullah, I., Iqbal, J., 2014. A multi-robot educational and research framework. Int. J. Acad. Res., 6(2):217-222.
[3]Ani, O.A., Xu, H., Shen, Y.P., et al., 2013. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(1):11-29.
[4]Dakhlallah, J., Glaser, S., Mammar, S., 2008. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. American Control Conf., p.4597-4602.
[5]Ding, L., Gao, H., Deng, Z., et al., 2010. Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol., 17(1):129-135.
[6]Ding, L., Gao, H., Deng, Z., et al., 2011. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech., 48(1):27-45.
[7]Ding, L., Gao, H., Deng, Z., et al., 2013. Longitudinal slip versus skid of planetary rovers’ wheels traversing on deformable slopes. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2842-2848.
[8]Gao, H., Guo, J., Ding, L., et al., 2013. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J. Terramech., 50(5-6):327-343.
[9]Iqbal, J., Islam, R.U., Khan, H., 2012. Modeling and analysis of a 6 DOF robotic arm manipulator. Can. J. Electr. Electron. Eng., 3(6):300-306.
[10]Iqbal, J., un Nabi, S.R., Khan, A., et al., 2013. A novel track- drive mobile robotic framework for conducting projects on robotics and control systems. Life Sci. J., 10(3):130-137.
[11]Ishigami, G., Miwa, A., Nagatani, K., et al., 2007. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot., 24(3):233-250.
[12]Krejsa, J., Vechet, S., 2012. Infrared beacons based localization of mobile robot. Elektron. Elektrotech., 117(1):17-22.
[13]Kulakowski, B.T., 1991. Mathematical model of skid resistance as a function of speed. In: Pavement Management: Data Collection, Analysis, and Storage. Transportation Research Board, USA, p.26-33.
[14]Li, Y.P., Zielinska, T., Ang, V.M.H., et al., 2006. Wheel- ground interaction modelling and torque distribution for a redundant mobile robot. Proc. IEEE Int. Conf. on Robotics and Automation, p.3362-3367.
[15]Manzoor, S., Islam, R.U., Khalid, A., et al., 2014. An open- source multi-DOF articulated robotic educational platform for autonomous object manipulation. Robot. Comput.-Integr. Manuf., 30(3):351-362.
[16]Pusca, R., Ait-Amirat, Y., Berthon, A., et al., 2002. Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives. Proc. IEEE 56th Vehicular Technology Conf., p.1671-1675.
[17]Sánchez-Hermosilla, J., Rodríguez, F., González, R., et al., 2010. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, Croatia, p.583-607.
[18]Sidek, N., Sarkar, N., 2008. Dynamic modeling and control of nonholonomic mobile robot with lateral slip. Proc. 3rd Int. Conf. on Systems, p.35-40.
[19]Ward, C.C., Iagnemma, K., 2008. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans. Robot., 24(4):821-831.
[20]Wong, J.Y., Reece, A.R., 1967. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: Part II. Performance of towed rigid wheels. J. Terramech., 4(2):7-25.
[21]Zielinska, T., Chmielniak, A., 2010. Controlling the slip in mobile robots. Proc. 13th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines, p.13-20.
[22]Zohaib, M., Pasha, S.M., Javaid, N., et al., 2014a. An improved algorithm for collision avoidance in environments having U and H shaped obstacles. Stud. Inform. Contr., 23(1):97-106.
[23]Zohaib, M., Pasha, S.M., Javaid, N., et al., 2014b. IBA: intelligent bug algorithm—a novel strategy to navigate mobile robots autonomously. Proc. 3rd Int. Multi-topic Conf., p.291-299.
Open peer comments: Debate/Discuss/Question/Opinion
<1>