CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-06-08
Cited: 3
Clicked: 6297
Mingjie Feng, Shiwen Mao, Tao Jiang. Enhancing the performance of future wireless networks with software-defined networking[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(7): 606-619.
@article{title="Enhancing the performance of future wireless networks with software-defined networking",
author="Mingjie Feng, Shiwen Mao, Tao Jiang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="7",
pages="606-619",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500336"
}
%0 Journal Article
%T Enhancing the performance of future wireless networks with software-defined networking
%A Mingjie Feng
%A Shiwen Mao
%A Tao Jiang
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 7
%P 606-619
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500336
TY - JOUR
T1 - Enhancing the performance of future wireless networks with software-defined networking
A1 - Mingjie Feng
A1 - Shiwen Mao
A1 - Tao Jiang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 7
SP - 606
EP - 619
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500336
Abstract: To provide ubiquitous Internet access under the explosive increase of applications and data traffic, the current network architecture has become highly heterogeneous and complex, making network management a challenging task. To this end, software-defined networking (SDN) has been proposed as a promising solution. In the SDN architecture, the control plane and the data plane are decoupled, and the network infrastructures are abstracted and managed by a centralized controller. With SDN, efficient and flexible network control can be achieved, which potentially enhances network performance. To harvest the benefits of SDN in wireless networks, the software-defined wireless network (SDWN) architecture has been recently considered. In this paper, we first analyze the applications of SDN to different types of wireless networks. We then discuss several important technical aspects of performance enhancement in SDN-based wireless networks. Finally, we present possible future research directions of SDWN.
[1]Abbasia, A.A., Younis, M., 2007. A survey on clustering algorithms for wireless sensor networks. Comput. Commun., 30(14-15):2826-2841.
[2]Akkaya, K., Younis, M., 2005. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw., 3(3):325-349.
[3]Akyildiz, I.F., Wang, X., 2005. A survey on wireless mesh networks. IEEE Commun. Mag., 43(9):S23-S30.
[4]Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., 2002. Wireless sensor networks: a survey. Comput. Netw., 38(4):393-422.
[5]Ali-Ahmad, H., Cicconetti, C., de la Oliva, A., et al., 2013. CROWD: an SDN approach for DenseNets. Proc. 2nd European Workshop on Software Defined Networks, p.25-31.
[6]Al-Karaki, J.N., Kamal, A.E., 2004. Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun., 11(6):6-28.
[7]Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6):1065-1082.
[8]Arslan, M.Y., Sundaresan, K., Rangarajan, S., 2015. Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun. Mag., 53(1):150-156.
[9]Arslan, Z., Erel, M., Özcevik, Y., et al., 2014. SDoff: a software-defined offloading controller for heterogeneous networks. Proc. IEEE Wireless Communications and Networking Conf., p.2827-2832.
[10]Bansal, M., Mehlman, J., Katti, S., et al., 2012. Open-Radio: a programmable wireless dataplane. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.109-114.
[11]Bernardos, C.J., de la Oliva, A., Serrano, P., et al., 2014. An architecture for software defined wireless networking. IEEE Wirel. Commun., 21(3):52-61.
[12]Cai, Y., Yu, F.R., Liang, C., 2014. Resource sharing for software defined D2D communications in virtual wireless networks with imperfect NSI. Proc. IEEE Global Communications Conf., p.4448-4453.
[13]Cao, Y., Jiang, T., Wang, C., 2015. Cooperative device-to-device communications in cellular networks. IEEE Wirel. Commun., 22(3):124-129.
[14]Chandrasekhar, V., Andrews, J.G., 2009. Spectrum allocation in tiered cellular networks. IEEE Trans. Commun., 57(10):3059-3068.
[15]Chandrasekhar, V., Andrews, J.G., Muharemovic, T., et al., 2009. Power control in two-tier femtocell networks. IEEE Trans. Wirel. Commun., 8(8):4316-4328.
[16]Cheung, W.C., Quek, T.Q.S., Kountouris, M., 2012. Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun., 30(3):561-574.
[17]Dely, P., Kassler, A., Bayer, N., 2011. OpenFlow for wireless mesh networks. Proc. 20th Int. Conf. on Computer Communications and Networks, p.1-6.
[18]Demirkol, I., Ersoy, C., Alagöz, F., 2006. MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag., 44(4):115-121.
[19]Doppler, K., Rinne, M., Wijting, C., et al., 2009. Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag., 47(12):42-49.
[20]Feng, M., Mao, S., 2016. Harvest the potential of massive MIMO with multi-layer techniques. IEEE Netw., in press.
[21]Feng, M., Chen, D., Wang, Z., et al., 2012a. An improved spectrum management scheme for OFDMA femtocell networks. Proc. 1st IEEE Int. Conf. on Communications in China, p.132-136.
[22]Feng, M., Chen, D., Wang, Z., et al., 2012b. Throughput improvement for OFDMA femtocell networks through spectrum allocation and access control strategy. Proc. Computing, Communications and Applications Conf., p.387-391.
[23]Feng, M., Jiang, T., Chen, D., et al., 2014. Cooperative small cell networks: high capacity for hotspots with interference mitigation. IEEE Wirel. Commun., 21(6):108-116.
[24]Feng, M., Mao, S., Jiang, T., 2015a. Duplex mode selection and channel allocation for full-duplex cognitive femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.1900-1905.
[25]Feng, M., Mao, S., Jiang, T., 2015b. Joint duplex mode selection, channel allocation, and power control for full-duplex cognitive femtocell networks. Dig. Commun. Netw., 1(1):30-44.
[26]Feng, M., Mao, S., Jiang, T., 2016. BOOST: base station on-off switching strategy for energy efficient massive MIMO HetNets. Proc. IEEE INFOCOM, p.1395-1403.
[27]Fodor, G., Dahlman, E., Mildh, G., et al., 2012. Design aspects of network assisted device-to-device communications. IEEE Commun. Mag., 50(3):170-177.
[28]Frangoudis, P.A., Polyzos, G.C., 2014. Security and performance challenges for user-centric wireless networking. IEEE Commun. Mag., 52(12):48-55.
[29]Gao, P., Chen, D., Feng, M., et al., 2013. On the interference avoidance method in two-tier LTE networks with femtocells. Proc. IEEE Wireless Communications and Networking Conf., p.3585-3590.
[30]Golrezaei, N., Shanmugam, K., Dimakis, A.G., et al., 2012. FemtoCaching: wireless video content delivery through distributed caching helpers. Proc. IEEE INFOCOM, p.1107-1115.
[31]Golrezaei, N., Molisch, A.F., Dimakis, A.G., et al., 2013. Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun. Mag., 51(4):142-149.
[32]Goyal, S., Liu, P., Hua, S., et al., 2013. Analyzing a full-duplex cellular system. Proc. 47th Annual Conf. on Information Sciences and Systems, p.1-6.
[33]Gudipati, A., Perry, D., Li, L.E., et al., 2013. SoftRAN: software defined radio access network. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.25-30.
[34]Guimarães, C., Corujo, D., Aguiar, R.L., et al., 2013. Empowering software defined wireless networks through media independent handover management. Proc. IEEE Global Communications Conf., p.2204-2209.
[35]Guo, P., Jiang, T., Zhang, K., et al., 2009. Clustering algorithm in initialization of multi-hop wireless sensor networks. IEEE Trans. Wirel. Commun., 8(12):5713-5717.
[36]Hoang, A.T., Liang, Y.C., 2008. Downlink channel assignment and power control for cognitive radio networks. IEEE Trans. Wirel. Commun., 7(8):3106-3117.
[37]Hoydis, J., Hosseini, K., ten Brink, S., et al., 2013. Making smart use of excess antennas: massive MIMO, small cells, and TDD. Bell Labs Tech. J., 18(2):5-21.
[38]Hu, D., Mao, S., 2011. Multicast in femtocell networks: a successive interference cancellation approach. Proc. IEEE Global Telecommunications Conf., p.1-6.
[39]Hu, D., Mao, S., 2012. On medium grain scalable video streaming over femtocell cognitive radio networks. IEEE J. Sel. Areas Commun., 30(3):641-651.
[40]Hu, F., Hao, Q., Bao, K., 2014. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun. Surv. Tutor., 16(4):2181-2206.
[41]Huang, Y., Walsh, P.A., Li, Y., et al., 2014. A distributed polling service-based MAC protocol testbed. Int. J. Commun. Syst., 27(12):3901-3921.
[42]Jararweh, Y., Ayyoub, M.A., Doulat, A., et al., 2014. SD-CRN: software defined cognitive radio network framework. Proc. IEEE Int. Conf. on Cloud Engineering, p.592-597.
[43]Jiang, Z., Mao, S., 2013. Access strategy and dynamic downlink resource allocation for femtocell networks. Proc. IEEE Global Communications Conf., p.3528-3533.
[44]Jiang, Z., Mao, S., 2015. Energy delay trade-off in cloud offloading for multi-core mobile devices. IEEE Access, 3:2306-2316.
[45]Kerpez, K.J., Cioffi, J.M., Ginis, G., et al., 2014. Software-defined access networks. IEEE Commun. Mag., 52(9):152-159.
[46]Kim, H., Feamster, N., 2013. Improving network management with software defined networking. IEEE Commun. Mag., 51(2):114-119.
[47]Kompella, S., Mao, S., Hou, Y.T., et al., 2009. On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Trans. Netw., 17(1):212-224.
[48]Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., et al., 2015. Software-defined networking: a comprehensive survey. Proc. IEEE, 103(1):14-76.
[49]Lee, H.C., Oh, D.C., Lee, Y.H., 2010. Mitigation of inter-femtocell interference with adaptive fractional frequency reuse. Proc. IEEE Int. Conf. on Communications, p.1-5.
[50]Li, Y., Mao, S., Panwar, S.S., et al., 2008. On the performance of distributed polling service-based medium access control. IEEE Trans. Wirel. Commun., 7(11):4635-4645.
[51]Luo, T., Tan, H.P., Quek, T.Q.S., 2012. Sensor OpenFlow: enabling software-defined wireless sensor networks. IEEE Commun. Lett., 16(11):1896-1899.
[52]Madan, R., Borran, J., Sampath, A., et al., 2010. Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun., 28(9):1479-1489.
[53]Mao, S., Hou, Y.T., 2004. BeamStar: a new low-cost data routing technology for wireless sensor networks. Proc. IEEE Global Telecommunications Conf., p.2919-2924.
[54]Mao, S., Lin, S., Panwar, S.S., et al., 2003. Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J. Sel. Areas Commun., 21(10):1721-1737.
[55]Mao, S., Lin, S., Wang, Y., et al., 2005. Multipath video transport over wireless ad hoc networks. IEEE Wirel. Commun., 12(4):42-49.
[56]Mao, S., Bushmitch, D., Narayanan, S., et al., 2006. MRTP: a multi-flow real-time transport protocol for ad hoc networks. IEEE Trans. Multim., 8(2):356-369.
[57]Mao, S., Cheng, X., Hou, Y., et al., 2007. On joint routing and server selection for MD video streaming in ad hoc networks. IEEE Trans. Wirel. Commun., 6(1):338-347.
[58]Mao, S., Hou, Y.T., Sherali, H.D., et al., 2008. Multimedia-centric routing for multiple description video in wireless mesh networks. IEEE Netw., 22(1):19-24.
[59]Mitola, J., Maguire, G.Q., 1999. Cognitive radio: making software radios more personal. IEEE Pers. Commun., 6(4):13-18.
[60]Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al., 2014. A survey of software-defined networking: past, present, future of programmable networks. IEEE Commun. Surv. Tutor., 16(3):1617-1634.
[61]Pentikousis, K., Wang, Y., Hu, W., 2013. MobileFlow: toward software-defined mobile networks. IEEE Commun. Mag., 51(7):44-53.
[62]Qiang, L., Li, J., Huang, C., 2014. A software-defined network based vertical handoff scheme for heterogeneous wireless networks. Proc. IEEE Global Communications Conf., p.4671-4676.
[63]Saquib, N., Hossain, E., Le, L.B., et al., 2012. Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wirel. Commun., 19(3):86-95.
[64]Schulz-Zander, J., Suresh, L., Sarrar, N., et al., 2014. Programmatic orchestration of WiFi networks. Proc. USENIX Annual Technical Conf., p.347-358.
[65]Sezer, S., Scott-Hayward, S., Chouhan, P.K., et al., 2013. Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag., 51(7):36-43.
[66]Son, I.K., Mao, S., Sajal, K.D., 2014a. On the design and optimization of a free space optical access network. Opt. Switch. Netw., 11(A):29-43.
[67]Son, I.K., Mao, S., Sajal, K.D., 2014b. On joint topology design and load balancing in free-space optical networks. Opt. Switch. Netw., 11(A):92-104.
[68]Tang, N., Mao, S., Kompella, S., 2016. On power control in full duplex underlay cognitive radio networks. Ad Hoc Netw., 37(2):183-194.
[69]Vestin, J., Dely, P., Kassler, A., et al., 2013. CloudMAC: towards software defined WLANs. ACM SIGMOBILE Mob. Comput. Commun. Rev., 16(4):42-45.
[70]Wang, X., Mao, S., 2012. Distributed power control in full duplex wireless networks. Proc. IEEE Wireless Communications and Networking Conf., p.1165-1170.
[71]Xia, W., Wen, Y., Foh, C., et al., 2015. A survey on software-defined networking. IEEE Commun. Surv. Tutor., 17(1):27-51.
[72]Xing, Y., Mathur, C.N., Haleem, M.A., et al., 2007. Dynamic spectrum access with QoS and interference temperature constraints. IEEE Trans. Mob. Comput., 6(4):423-433.
[73]Xu, Y., Mao, S., 2015. User association in massive MIMO HetNets. IEEE Syst. J., in press.
[74]Xu, Y., Mao, S., Su, X., 2012. On adopting interleave division multiple access to two-tier femtocell networks: the uplink case. Proc. IEEE Int. Conf. on Communications, p.591-595.
[75]Xu, Y., Yue, G., Mao, S., 2014. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2:947-959.
[76]Ye, Q., Rong, B., Chen, Y., et al., 2013. User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun., 12(6):2706-2716.
[77]Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., 2013. On scalability of software-defined networking. IEEE Commun. Mag., 51(2):136-141.
[78]Yick, J., Mukherjee, B., Ghosal, D., 2008. Wireless sensor network survey. Comput. Netw., 52(12):2292-2330.
[79]Zhang, R., Song, L., Han, Z., et al., 2013. Distributed resource allocation for device-to-device communications underlaying cellular networks. Proc. IEEE Int. Conf. on Communications, p.1889-1893.
[80]Zhao, Y., Mao, S., Neel, J.O., et al., 2009. Performance evaluation of cognitive radios: metrics, utility functions, and methodology. Proc. IEEE, 97(4):642-659.
[81]Zhou, H., Mao, S., Agrawal, P., 2015a. Approximation algorithms for cell association and scheduling in femtocell networks. IEEE Trans. Emerg. Topics Comput., 3(3):432-443.
[82]Zhou, H., Hu, D., Mao, S., et al., 2015b. Cell association and handover management in femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.661-666.
[83]Zhu, Z., Gupta, P., Wang, Q., et al., 2011. Virtual base station pool: towards a wireless network cloud for radio access networks. Proc. 8th ACM Int. Conf. on Computing Frontiers, Article 34.
Open peer comments: Debate/Discuss/Question/Opinion
<1>