Full Text:   <2378>

Summary:  <1762>

CLC number: TN92

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-04-03

Cited: 0

Clicked: 7967

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mei-qin Liu

http://orcid.org/0000-0003-0693-6574

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.4 P.544-556

http://doi.org/10.1631/FITEE.1601695


Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks


Author(s):  Duo Zhang, Mei-qin Liu, Sen-lin Zhang, Zhen Fan, Qun-fei Zhang

Affiliation(s):  State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhangduo@zju.edu.cn, liumeiqin@zju.edu.cn, slzhang@zju.edu.cn, fanzhen@zju.edu.cn, zhangqf@nwpu.edu.cn

Key Words:  Target tacking, Fusion weight, Mutual information, Node selection, Underwater wireless sensor networks


Duo Zhang, Mei-qin Liu, Sen-lin Zhang, Zhen Fan, Qun-fei Zhang. Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 544-556.

@article{title="Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks",
author="Duo Zhang, Mei-qin Liu, Sen-lin Zhang, Zhen Fan, Qun-fei Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="4",
pages="544-556",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601695"
}

%0 Journal Article
%T Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks
%A Duo Zhang
%A Mei-qin Liu
%A Sen-lin Zhang
%A Zhen Fan
%A Qun-fei Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 4
%P 544-556
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601695

TY - JOUR
T1 - Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks
A1 - Duo Zhang
A1 - Mei-qin Liu
A1 - Sen-lin Zhang
A1 - Zhen Fan
A1 - Qun-fei Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 4
SP - 544
EP - 556
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601695


Abstract: 
underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to limited energy and bandwidth resources, only a small number of nodes are selected to track a target at each interval. Because all measurements are fused together to provide information in a fusion center, fusion weights of all selected nodes may affect the performance of target tracking. As far as we know, almost all existing tracking schemes neglect this problem. We study a weighted fusion scheme for target tracking in UWSNs. First, because the mutual information (MI) between a node's measurement and the target state can quantify target information provided by the node, it is calculated to determine proper fusion weights. Second, we design a novel multi-sensor weighted particle filter (MSWPF) using fusion weights determined by MI. Third, we present a local node selection scheme based on posterior Cramer-Rao lower bound (PCRLB) to improve tracking efficiency. Finally, simulation results are presented to verify the performance improvement of our scheme with proper fusion weights.

基于互信息的水下无线传感器网络目标跟踪与加权融合

摘要:水下无线传感器网络为水下目标跟踪问题提供了可靠有效支持,但水下网络能量和带宽资源有限,只能选择一部分节点参与跟踪任务。融合中心通过收集、融合各个传感器发送的量测进行目标跟踪,因此设计更好的融合权值极为重要。针对水下目标跟踪中的加权融合问题,首先通过计算量测与目标状态之间的互信息,利用互信息衡量融合权重;其次利用互信息融合权重设计一种新的多传感器加权粒子滤波算法,利用克拉美罗(Cramer-Rao)下界设计节点选择方案,以提高跟踪算法效率;最后通过仿真实验对算法进行验证。仿真结果表明,通过选择合适融合权值,目标状态估计精度显著提高。

关键词:目标跟踪;加权融合;互信息;节点选择;水下无线传感器网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arulampalam M, Maskell S, Gordon N, et al., 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process, 50(2):174-188.

[2]Asif M, Rizal M, Yahya A, 2006. An active contour for underwater target tracking and navigation. Int Conf on Man-Machine Systems, p.1-6.

[3]Baumgartner K, Ferrari S, Rao A, 2009a. Optimal control of an underwater sensor network for cooperative target tracking. IEEE J Ocean Eng, 34(4):678-697.

[4]Baumgartner K, Ferrari S, Wettergren T, 2009b. Robust deployment of dynamic sensor networks for cooperative track detection. IEEE Sens J, 9(9):1029-1048.

[5]Chen Y, Pan Q, Liang Y, et al., 2010. AWCL: adaptive weighted centroid target localization algorithm based on RSSI in WSN. IEEE Int Conf on Computer Science and Information Technology, p.331-336.

[6]Dalberg E, Lauberts A, Lennartsson R, et al., 2006. Underwater target tracking by means of acoustic and electromagnetic data fusion. 9th Int Conf on Information Fusion, p.1-7.

[7]Doug H, Bruce D, Shozo M, 2002. Autonomous distributed systems: multiple-level distributed data fusion for future DADS using Bayesian network technology. Technical Report, IET-TR-ADS-04. Information Extraction and Transport Inc., VA, USA.

[8]Duan Z, Jilkov V, Li R, 2008. State estimation with quantized measurements: approximate MMSE approach. 11th Int Conf on Information Fusion, p.1-6.

[9]Georgy J, Noureldin A, Mellema G, 2012. Clustered mixture particle filter for underwater multitarget tracking in multistatic active sonobuoy systems. IEEE Trans Syst Man Cybern Part C Appl Rev, 42(4):547-560.

[10]Gordon N, Salmond D, Smith A, 1993. Novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE Proc F - Radar Signal Process, 140(2):107-113.

[11]Han G, Jiang J, Shu L, et al., 2012. Localization algorithms of underwater wireless sensor networks: a survey. Sensors, 12(2):2026-2061.

[12]Hoffmann G, Tomlin C, 2010. Mobile sensor network control using mutual information methods and particle filters. IEEE Trans Autom Contr, 55(1):32-47.

[13]Huang Y, Liang W, Yu H, et al., 2008. Target tracking based on a distributed particle filter in underwater sensor networks. Wirel Commun Mob Comput, 8(8):1023-1033.

[14]Isbitiren G, Akan O, 2011. Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Trans Veh Tech, 60(8):3897-3906.

[15]Javadi S, Peiravi A, 2015. Fusion of weighted decisions in wireless sensor networks. IET Wirel Sens Syst, 5(2):97-105.

[16]Liang Q, Cheng X, 2009. Underwater acoustic sensor networks: target size detection and performance analysis. Ad Hoc Netw, 7(4):803-808.

[17]Liu M, Zhang Q, Zhang S, 2016. Computationally efficient target-node geometry selection for target tracking in UWSNs. 19th Int Conf on Information Fusion, p.1608-1615.

[18]Masazade E, Niu R, Varshney P, et al., 2010. Energy aware iterative source localization for wireless sensor networks. IEEE Trans Signal Process, 58(9):4824-4835.

[19]Masazade E, Niu R, Varshney P, 2012. Dynamic bit allocation for object tracking in wireless sensor networks. IEEE Trans Signal Process, 60(10):5048-5063.

[20]Ozdemir O, Niu R, Varshney P, 2009. Channel aware target localization with quantized data in wireless sensor networks. IEEE Trans Signal Process, 57(3):1190-1202.

[21]Pettersson M, Zetterberg V, Claesson I, 2005. Detection and imaging of moving targets in wideband SAS using fast time backprojection combined with space-time processing. MTS/IEEE Oceans, p.2388-2393.

[22]Punithakumar K, Kirubarajan T, Hernandez M, 2006. Multisensor deployment using PCRLBs, incorporating sensor deployment and motion uncertainties. IEEE Trans Aerosp Electr Syst, 42(4):1474-1485.

[23]Ruan Y, Willett P, Marrs A, 2003. Fusion of quantized measurements via particle filtering. IEEE Aerospace Conf, p.1967-1978.

[24]Shannon CE, 2001. A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev, 5(1):3-55.

[25]Taylor R, Flanagan B, Uber J, 2003. Computing the recursive posterior Cramer-Rao bound for a nonlinear nonstationary system. IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.673-676.

[26]Tichavsky P, Muravchik C, Nehorai A, 1998. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE Trans Signal Process, 46(5):1386-1396.

[27]Wang H, Yao K, Estrin D, 2005. Information-theoretic approaches for sensor selection and placement in sensor networks for target localization and tracking. J Commun Netw, 7(4):438-449.

[28]Wang X, Xu M, Wang H, et al., 2012. Combination of interacting multiple models with the particle filter for three-dimensional target tracking in underwater wireless sensor networks. Math Prob Eng, 2012:1-16.

[29]Yu C, Lee K, Choi J, et al., 2008. Distributed single target tracking in underwater wireless sensor networks. SICE Annual Conf, p.1351-1356.

[30]Zhang D, Liu M, Zhang S, 2016. Node selection for target tracking in UWSNs under measurement origin uncertainty. 35th Chinese Control Conf, p.5154-5159.

[31]Zhang Q, Zhang S, Liu M, 2013. A clock synchronization independent localization scheme for underwater wireless sensor networks. 8th ACM Int Conf on Underwater Networks and Systems, p.152-156.

[32]Zhang Q, Liu M, Zhang S, et al., 2014. Node topology effect on target tracking based on underwater wireless sensor networks. 17th Int Conf on Information Fusion, p.1-8.

[33]Zhang Q, Liu M, Zhang S, 2015. Node topology effect on target tracking based on UWSNs using quantized measurements. IEEE Trans Cybern, 45(10):2323-2335.

[34]Zhang S, Zhang Q, Liu M, 2014. A top-down positioning scheme for underwater wireless sensor networks. Sci China Inform Sci, 57(3):1-10.

[35]Zhang X, Willett P, Bar-Shalom Y, 2005. Dynamic Cramer-Rao bound for target tracking in clutter. IEEE Trans Aerosp Electr Syst, 41(4):1154-1167.

[36]Zhou S, Willett P, 2007. Submarine location estimation via a network of detection-only sensors. IEEE Trans Signal Process, 55(6):3104-3115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE