CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-03-23
Cited: 0
Clicked: 6451
Shan-zhi Chen, Shao-li Kang. A tutorial on 5G and the progress in China[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 309-321.
@article{title="A tutorial on 5G and the progress in China",
author="Shan-zhi Chen, Shao-li Kang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="3",
pages="309-321",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800070"
}
%0 Journal Article
%T A tutorial on 5G and the progress in China
%A Shan-zhi Chen
%A Shao-li Kang
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 3
%P 309-321
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800070
TY - JOUR
T1 - A tutorial on 5G and the progress in China
A1 - Shan-zhi Chen
A1 - Shao-li Kang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 3
SP - 309
EP - 321
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800070
Abstract: 5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency management, technology trials, industrial ecology, and a list of main 5G contributors. We also point out the contributions to 5G from China, aiming to be ‘globally leading in 5G’ by acting as a main 5G contributor in standardization and promoting/enhancing the Chinese 5G industry. Finally, progress on 5G is reviewed mixed with our rethinking of 5G.
[1]3GPP, 2016a. Non-orthogonal multiple access candidate for NR. R1-163992. Samsung.
[2]3GPP, 2016b. RSMA. R1-164688. Qualcomm Incorporated.
[3]Agyapong PK, Iwamura M, Staehle D, et al., 2014. Design considerations for a 5G network architecture. IEEE Commun Mag, 52(11):65-75.
[4]Cai YL, Qin ZJ, Cui FY, et al., 2018. Modulation and multiple access for 5G networks. IEEE Commun Surv Tutor, 20(1):629-646.
[5]Chen D, Qu DM, Jiang T, et al., 2013. Prototype filter optimization to minimize stopband energy with NPR constraint for filter bank multicarrier modulation systems. IEEE Trans Signal Process, 61(1):159-169.
[6]Chen SZ, Zhao J, 2014. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun Mag, 52(5):36-43.
[7]Chen SZ, Sun SH, Wang YM, et al., 2015a. A comprehensive survey of TDD-based mobile communication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G directions. China Commun, 12(2):40-60.
[8]Chen SZ, Zhao J, Ai M, et al., 2015b. Virtual RATs and a flexible and tailored radio access network evolving to 5G. IEEE Commun Mag, 53(6):52-58.
[9]Chen SZ, Zhang P, Tafazolli R, 2016a. Enabling technologies for beyond TD-LTE-Advanced and 5G wireless communications. China Commun, 13(6):iv-v.
[10]Chen SZ, Sun SH, Gao QB, et al., 2016b. Adaptive beamforming in TDD-based mobile communication systems:state of the art and 5G research directions. IEEE Wirel Commun, 23(6):81-87.
[11]Chen SZ, Qin F, Hu B, et al., 2016c. User-centric ultra-dense networks for 5G:challenges, methodologies, and directions. IEEE Wirel Commun, 23(2):78-85.
[12]Chen SZ, Hu JL, Shi Y, et al., 2016d. LTE-V:a TD-LTE-based V2X solution for future vehicular network. IEEE Internet Things J, 3(6):997-1005.
[13]Chen SZ, Ren B, Gao QB, et al., 2017a. Pattern division multiple access—a novel nonorthogonal multiple access for fifth-generation radio networks. IEEE Trans Veh Technol, 66(4):3185-3196.
[14]Chen SZ, Hu JL, Shi Y, et al., 2017b. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun Stand Mag, 1(2):70-76.
[15]Chen Y, Bayesteh A, Wu YQ, et al., 2018. Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun Mag, 56(3):19-27.
[16]Dai LL, Wang BC, Yuan YF, et al., 2015. Non-orthogonal multiple access for 5G:solutions, challenges, opportunities, and future research trends. IEEE Commun Mag, 53(9):74-81.
[17]Ding ZG, Lei XF, Karagiannidis GK, et al., 2017. A survey on non-orthogonal multiple access for 5G networks:research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181-2195.
[18]Ge XH, Tu S, Mao GQ, et al., 2016. 5G ultra-dense cellular networks. IEEE Wirel Commun, 23(1):72-79.
[19]IMT-2020(5G) Promotion Group, 2014. 5G vision and requirements. White Paper.
[20]IMT-2020(5G) Promotion Group, 2015a. 5G network technology architecture. White Paper.
[21]IMT-2020(5G) Promotion Group, 2015b. 5G wireless technology architecture. White Paper.
[22]IMT-2020(5G) Promotion Group, 2017. 5G economic and social impact. White Paper.
[23]ITU-R, 2014. Future technology trends of terrestrial IMT systems. ITU-R M.2320-0.
[24]ITU-R, 2015. IMT vision—framework and overall objectives of the future development of IMT for 2020 and beyond. ITU-R M.2083-0.
[25]Larsson EG, Edfors O, Tufvesson F, et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 52(2):186-195.
[26]Marzetta TL, 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 9(11):3590-3600.
[27]NGMN Alliance, 2015. NGMN 5G white paper.
[28]Nikopour H, Baligh H, 2013. Sparse code multiple access. Proc 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.332-336.
[29]Qi XT, Wu N, Huang H, et al., 2017. A factor graph-based iterative detection of faster-than-Nyquist signaling in the presence of phase noise and carrier frequency offset. Dig Signal Process, 63:25-34.
[30]Takahashi H, 2016. Study on new radio access technology— physical layer aspects. 3GPP Report TR38.802.
[31]Tian KD, Liu RK, Wang RX, 2016. Joint successive cancellation decoding for bit-interleaved polar coded modulation. IEEE Commun Lett, 20(2):224-227.
[32]Vakilian V, Wild T, Schaich F, et al., 2013. Universal-filtered multi-carrier technique for wireless systems beyond LTE. Proc IEEE Globalcom Workshop, p.223-228.
[33]Wang CX, Haider F, Gao XQ, et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 52(2):122-130.
[34]Wang HC, Chen SZ, Xu H, et al., 2015. SoftNet:a software defined decentralized mobile network architecture toward 5G. IEEE Network, 29(2):16-22.
[35]Wang HC, Chen SZ, Ai M, et al., 2017. Localized mobility management for 5G ultra dense network. IEEE Trans Veh Technol, 66(9):8535-8552.
[36]Wunder G, Jung P, Kasparick M, et al., 2014. 5GNOW:non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun Mag, 52(2):97-105.
[37]Yuan ZF, Yu GH, Li WM, et al., 2016. Multi-user shared access for Internet of Things. Proc 83rd Vehicular Technology Conf, p.1-5.
[38]Zhu M, Guo Q, Bai BM, et al., 2016. Reliability-based joint detection-decoding algorithm for nonbinary LDPC-coded modulation systems. IEEE Trans Commun, 64(1):2-14.
Open peer comments: Debate/Discuss/Question/Opinion
<1>