CLC number: TP271.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-09-04
Cited: 0
Clicked: 5836
Ming-jie Li, Jian-hua Wei, Jin-hui Fang, Wen-zhuo Shi, Kai Guo. Fuzzy impedance control of an electro-hydraulic actuator with an extended disturbance observer[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(9): 1221-1233.
@article{title="Fuzzy impedance control of an electro-hydraulic actuator with an extended disturbance observer",
author="Ming-jie Li, Jian-hua Wei, Jin-hui Fang, Wen-zhuo Shi, Kai Guo",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="9",
pages="1221-1233",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800155"
}
%0 Journal Article
%T Fuzzy impedance control of an electro-hydraulic actuator with an extended disturbance observer
%A Ming-jie Li
%A Jian-hua Wei
%A Jin-hui Fang
%A Wen-zhuo Shi
%A Kai Guo
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 9
%P 1221-1233
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800155
TY - JOUR
T1 - Fuzzy impedance control of an electro-hydraulic actuator with an extended disturbance observer
A1 - Ming-jie Li
A1 - Jian-hua Wei
A1 - Jin-hui Fang
A1 - Wen-zhuo Shi
A1 - Kai Guo
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 9
SP - 1221
EP - 1233
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800155
Abstract: In this paper, we deal with both velocity control and force control of a single-rod electro-hydraulic actuator subject to external disturbances and parameter uncertainties. In some implementations, both velocity control and force control are required. impedance control and an extended disturbance observer are combined to solve this issue. impedance control is applied to regulate the dynamic relationship between the velocity and output force of the actuator, which can help avoid impact and keep a proper contact force on the environment or workpieces. Parameters of impedance rules are regulated by a fuzzy algorithm. An extended disturbance observer is employed to account for external disturbances and parameter uncertainties to achieve an accurate velocity tracking. A detailed model of load force dynamics is presented for the development of the extended disturbance observer. The stability of the whole system is analyzed. Experimental results demonstrate that the proposed control strategy has not only a high velocity tracking performance, but also a good force adjustment performance, and that it should be widely applied in construction and assembly.
[1]Ahn KK, Nam DNC, Jin ML, 2014. Adaptive backstepping control of an electrohydraulic actuator. IEEE/ASME Trans Mech, 19(3):987-995.
[2]Chen WH, 2004. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mech, 9(4):706- 710.
[3]Chen YY, Zhao J, Wang BD, et al., 2005. High precision fuzzy impedance control of free-form surfaces polishing robotic arm based on position control. Proc IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, p.819-824.
[4]Chen Z, Yao B, Wang QF, 2013. Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect. IEEE/ASME Trans Mech, 18(3):1122-1129.
[5]Cui RX, Chen LP, Yang CG, et al., 2017. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans Ind Electron, 64(8): 6785-6795.
[6]Fateh MM, 2010. Robust impedance control of a hydraulic suspension system. Int J Robust Nonl, 20(8):858-872.
[7]Fateh MM, Alavi SS, 2009. Impedance control of an active suspension system. Mechatronics, 19(1):134-140.
[8]Friedland B, Park YJ, 1992. On adaptive friction compensation. IEEE Trans Autom Contr, 37(10):1609-1612.
[9]Guo K, Wei JH, Fang JH, et al., 2015. Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer. Mechatronics, 27:47-56.
[10]Hogan N, 1985a. Impedance control: an approach to manipulation: part I—theory. J Dynam Syst Meas Contr, 107(1):1-7.
[11]Hogan N, 1985b. Impedance control: an approach to manipulation: part II—implementation. J Dynam Syst Meas Contr, 107(1):8-16.
[12]Hogan N, 1985c. Impedance control: an approach to manipulation: part III—applications. J Dynam Syst Meas Contr, 107(1):17-24.
[13]Kim CS, Hong KS, Kim MK, 2005. Nonlinear robust control of a hydraulic elevator: experiment-based modeling and two-stage Lyapunov redesign. Contr Eng Pract, 13(6): 789-803.
[14]Kim W, Shin D, Won D, et al., 2013. Disturbance-observer- based position tracking controller in the presence of biased sinusoidal disturbance for electrohydraulic actuators. IEEE Trans Contr Syst Technol, 21(6): 2290-2298.
[15]Li SZ, Wei JH, Guo K, et al., 2017. Nonlinear robust prediction control of hybrid active-passive heave compensator with extended disturbance observer. IEEE Trans Ind Electron, 64(8):6684-6694.
[16]Li ZJ, Liu JQ, Huang ZC, et al., 2017. Adaptive impedance control of human-robot cooperation using reinforcement learning. IEEE Trans Ind Electron, 64(10):8013-8022.
[17]Lin Y, Shi Y, Burton R, 2013. Modeling and robust discrete- time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans Mech, 18(1):1-10.
[18]Mintsa HA, Venugopal R, Kenne JP, et al., 2012. Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty. IEEE Trans Contr Syst Technol, 20(4):1092-1099.
[19]Nam Y, 2001. QFT force loop design for the aerodynamic load simulator. IEEE Trans Aerosp Electron Syst, 37(4):1384- 1392.
[20]Pi YJ, Wang XY, 2010. Observer-based cascade control of a 6-DOF parallel hydraulic manipulator in joint space coordinate. Mechatronics, 20(6):648-655.
[21]Raibert MH, Craig JJ, 1981. Hybrid position/force control of manipulators. J Dynam Syst Meas Contr, 103(2):126-133.
[22]Sha DH, Bajic VB, Yang HY, 2002. New model and sliding mode control of hydraulic elevator velocity tracking system. Simul Pract Theory, 9(6-8):365-385.
[23]Shibata M, Murakami T, Ohnishi K, 1996. A unified approach to position and force control by fuzzy logic. IEEE Trans Ind Electron, 43(1):81-87.
[24]Sirouspour MR, Salcudean SE, 2001. Nonlinear control of hydraulic robots. IEEE Trans Rob Autom, 17(2):173-182.
[25]Slotine JJE, Li W, 1991. Applied Nonlinear Control. Englewood Cliffs, New Jersey, Prentice Hall, USA.
[26]Tian QY, Wei JH, Fang JH, et al., 2016. Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter. Front Inform Technol Electron Eng, 17(1):55-66.
[27]Truong DQ, Ahn KK, 2009. Force control for hydraulic load simulator using self-tuning grey predictor–fuzzy PID. Mechatronics, 19(2):233-246.
[28]Wei JH, Zhang Q, Li MJ, et al., 2016. High-performance motion control of the hydraulic press based on an extended fuzzy disturbance observer. Proc Inst Mech Eng Part I—J Syst Contr Eng, 230(9):1044-1061.
[29]Xu GZ, Song AG, Li HJ, 2011. Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network. J Intell Robot Syst, 62(3-4):501-525.
[30]Xu QS, 2015. Robust impedance control of a compliant microgripper for high-speed position/force regulation. IEEE Trans Ind Electron, 62(2):1201-1209.
[31]Yang HY, Shi H, Gong GF, et al., 2009. Electro-hydraulic proportional control of thrust system for shield tunneling machine. Autom Constr, 18(7):950-956.
[32]Yao B, Tomizuka M, 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893-900.
[33]Yao B, Bu FP, Reedy J, et al., 2000. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans Mech, 5(1):79-91.
[34]Yu L, Fei SM, Huang J, et al., 2017. Sliding mode switching control under arbitrary switchings in the presence of uncertain parameters. Proc Inst Mech Eng Part I—J Syst Contr Eng, 232(4):399-407.
[35]Zhang LB, Li ZJ, Yang CG, 2017. Adaptive neural network based variable stiffness control of uncertain robotic systems using disturbance observer. IEEE Trans Ind Electron, 64(3):2236-2245.
[36]Zhang Q, Fang JH, Wei JH, et al., 2016. Adaptive robust motion control of a fast forging hydraulic press considering the nonlinear uncertain accumulator model. Proc Inst Mech Eng Part I—J Syst Contr Eng, 230(6): 483-497.
[37]Zhu WH, Piedboeuf JC, 2005. Adaptive output force tracking control of hydraulic cylinders with applications to robot manipulators. J Dynam Syst Meas Contr, 127(2):206-217.
Open peer comments: Debate/Discuss/Question/Opinion
<1>