Full Text:   <1979>

Summary:  <1442>

CLC number: TN27

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-09-04

Cited: 0

Clicked: 5417

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xue-lei Liang

http://orcid.org/0000-0003-3095-0974

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.9 P.1289-1295

http://doi.org/10.1631/FITEE.1800167


Bistable electrowetting device with non-planar designed controlling electrodes for display applications


Author(s):  Han Zhang, Xue-lei Liang

Affiliation(s):  Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China

Corresponding email(s):   liangxl@pku.edu.cn

Key Words:  Bistable electrowetting, Non-planar]> Low voltage, High contrast


Han Zhang, Xue-lei Liang. Bistable electrowetting device with non-planar designed controlling electrodes for display applications[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(9): 1289-1295.

@article{title="Bistable electrowetting device with non-planar designed controlling electrodes for display applications",
author="Han Zhang, Xue-lei Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="9",
pages="1289-1295",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800167"
}

%0 Journal Article
%T Bistable electrowetting device with non-planar designed controlling electrodes for display applications
%A Han Zhang
%A Xue-lei Liang
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 9
%P 1289-1295
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800167

TY - JOUR
T1 - Bistable electrowetting device with non-planar designed controlling electrodes for display applications
A1 - Han Zhang
A1 - Xue-lei Liang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 9
SP - 1289
EP - 1295
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800167


Abstract: 
bistable electrowetting display (EWD) is a promising low-power electronic paper technology, where power is consumed only during the switching between two stable states; however, it is not required for state maintenance once switched. In this paper, a bistable electrowetting device with non-planar designed controlling electrodes is fabricated by a fully conventional photo-lithography process. The device has potential for video display applications with a controllable gray scale. The novel electrode design realizes a lower driving voltage and a higher contrast between two stable states than the EWDs with planar electrodes reported previously.

非平面电极双稳态电润湿显示器件研究

摘要:双稳态电润湿显示器仅在状态切换时耗能,在状态稳定时无耗能,是一种非常有潜力的低能耗电子纸显示技术。本文设计和实现了通过常规光刻工艺制备一种非平面电极结构的双稳态电润湿器件。该器件不仅具备视频响应速度,而且有潜力实现可控的像素灰阶。与现有平面电极结构双稳态电润湿器件相比,该新型电极结构可实现更低驱动电压和更高对比度。

关键词:双稳态电润湿;非平面;控制电极;低电压;高对比度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bitman A, Bartels F, Rawert J, et al., 2012. Production considerations for bistable droplet driven electrowetting displays. Society for Information Display Int Symp, p.1-4.

[2]Blankenbach K, Schmoll A, Bitman A, et al., 2008. Novel highly reflective and bistable electrowetting displays. J Soc Inform Disp, 16(2):237-244.

[3]Blankenbach K, Jentsch M, Rawert J, et al., 2011. Sunlight readable bistable electrowetting displays for indicators and billboards. Society for Information Display Int Symp, p.1-4.

[4]Brinker CJ, 2013. Dip coating. In: Schneller T, Waser R, Kosec M, et al. (Eds.), Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna, p.233- 261.

[5]Charipar KM, Charipar NA, Bellemare JV, et al., 2015. Electrowetting displays utilizing bistable, multi-color pixels via laser processing. J Disp Technol, 11(2):175- 182.

[6]Chen CY, Wang CY, Wang WC, et al., 2011. A 3.5-inch bendable active matrix electrowetting display. Society for Information Display Int Symp, p.1-4.

[7]Cho SK, Moon H, Kim CJ, 2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting- based actuation for digital microfluidic circuits. J Microelectromech Syst, 12(1):70-80.

[8]Comiskey B, Albert JD, Yoshizawa H, et al., 1998. An electrophoretic ink for all-printed reflective electronic displays. Nature, 394(6690):253-255.

[9]Dai YX, 2008. Design and Operation of TFT LCD Panels. Tsinghua University Press, Beijing, China (in Chinese).

[10]Deng Y, Tang B, Henzen AV, et al., 2017. Recent progress in video electronic paper displays based on electro-fluidic technology. Society for Information Display Int Symp, p.1-4.

[11]Hayes RA, Feenstra BJ, 2003. Video-speed electronic paper based on electrowetting. Nature, 425(6956):383-385.

[12]Heikenfeld J, Zhou K, Kreit E, et al., 2009. Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions. Nat Photon, 3(5):292-296.

[13]Hou L, Smith NR, Heikenfeld J, 2007. Electrowetting manipulation of any optical film. Appl Phys Lett, 90(25): 1-3.

[14]Huh D, Tkaczyk AH, Bahng JH, et al., 2003. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change. J Am Chem Soc, 125(48):14678-14679.

[15]Jones TB, 2005. An electromechanical interpretation of electrowetting. J Micromech Microeng, 15(6):1184-1187.

[16]Jung HY, Choi UC, Park SH, et al., 2012. Development of driver IC with novel driving method for the electrowetting display. Society for Information Display Int Symp, p.1-4.

[17]Kuiper S, Hendriks BHW, 2004. Variable-focus liquid lens for miniature cameras. Appl Phys Lett, 85(7):1128-1130.

[18]Lao Y, 2008. Ultra-High Transmission Electrowetting Displays. MS Thesis, University of Cincinnati, Cincinnati, USA.

[19]Mugele F, Baret JC, 2005. Electrowetting: from basics to applications. J Phys Condens Matter, 17(28):705-774.

[20]Pollack MG, Shenderov AD, Fair RB, 2002. Electrowetting- based actuation of droplets for integrated microfluidics. Lab Chip, 2(2):96-101.

[21]Rawert J, Jerosch D, Blankenbach K, et al., 2010. Bistable D3 electrowetting display products and applications. Society for Information Display Int Symp, p.1-4.

[22]Shui LL, Hayes RA, Jin ML, et al., 2014. Microfluidics for electronic paper-like displays. Lab Chip, 14(14):2374- 2384.

[23]Smith NR, Abeysinghe DC, Haus JW, et al., 2006. Agile wide-angle beam steering with electrowetting microprisms. Opt Expr, 14(14):6557-6563.

[24]Verheijen HJJ, Prins MWJ, 1999. Reversible electrowetting and trapping of charge: model and experiments. Langmuir, 15(20):6616-6620.

[25]Yang S, Zhou K, Kreit E, et al., 2010. High reflectivity electrofluidic pixels with zero-power grayscale operation. Appl Phys Lett, 97(14):1-3.

[26]You H, Steckl AJ, 2010. Three-color electrowetting display device for electronic paper. Appl Phys Lett, 97(2):1-3.

[27]Zhang H, Yan QP, Xu QY, et al., 2017. A sacrificial layer strategy for photolithography on highly hydrophobic surface and its application for electrowetting devices. Sci Rep, 7(1):1-7.

[28]Zhou K, Heikenfeld J, Dean KA, et al., 2009. A full description of a simple and scalable fabrication process for electrowetting displays. J Micromech Microeng, 19(6):1-12.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE