Full Text:   <2300>

Summary:  <1724>

CLC number: TB332; TP271

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-11-26

Cited: 0

Clicked: 5893

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tao Liu

https://orcid.org/0000-0002-2797-0264

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.11 P.1303-1315

http://doi.org/10.1631/FITEE.1800618


Artificial muscles for wearable assistance and rehabilitation


Author(s):  Tian-yun Dong, Xiang-liang Zhang, Tao Liu

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   liutao@zju.edu.cn

Key Words:  Artificial muscle, Smart material, Dielectric elastomers (DE), Polyvinyl chloride (PVC) gel, Actuator, Wearable assistance, Rehabilitation


Share this article to: More |Next Article >>>

Tian-yun Dong, Xiang-liang Zhang, Tao Liu. Artificial muscles for wearable assistance and rehabilitation[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(11): 1303-1315.

@article{title="Artificial muscles for wearable assistance and rehabilitation",
author="Tian-yun Dong, Xiang-liang Zhang, Tao Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="11",
pages="1303-1315",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800618"
}

%0 Journal Article
%T Artificial muscles for wearable assistance and rehabilitation
%A Tian-yun Dong
%A Xiang-liang Zhang
%A Tao Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 11
%P 1303-1315
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800618

TY - JOUR
T1 - Artificial muscles for wearable assistance and rehabilitation
A1 - Tian-yun Dong
A1 - Xiang-liang Zhang
A1 - Tao Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 11
SP - 1303
EP - 1315
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800618


Abstract: 
Traditional exoskeletons have made considerable contributions to people in terms of providing wearable assistance and rehabilitation. However, exoskeletons still have some disadvantages, such as being heavy, bulky, stiff, noisy, and having a fixed center of rotation that can be a burden on elders and patients with weakened muscles. Conversely, artificial muscles based on soft, smart materials possess the attributes of being lightweight, compact, highly flexible, and have mute actuation, for which they are considered to be the most similar to natural muscles. Among these materials, dielectric elastomer (DE) and polyvinyl chloride (PVC) gel exhibit considerable actuation strain, high actuation stress, high response speed, and long life span, which give them great potential for application in wearable assistance and rehabilitation. Unfortunately, there is very little research on the application of these two materials in these fields. In this review, we first introduce the working principles of the DE and PVC gel separately. Next, we summarize the DE materials and the preparation of PVC gel. Then, we review the electrodes and self-sensing systems of the two materials. Lastly, we present the initial applications of these two materials for wearable assistance and rehabilitation.

用于可穿戴式人体助力和运动康复的人工肌肉

摘要:传统外骨骼在可穿戴式人体助力和运动康复领域做出巨大贡献。然而,外骨骼仍然面临一些挑战,如质量大、结构复杂、刚度高、噪音大,且关节处有固定旋转中心,给老年人和肌肉虚弱者带来使用困难。相反,基于柔性智能材料的人工肌肉具有质量轻、结构紧凑、刚度低和静音驱动等特性,被认为是与天然肌肉最相似的材料。介电弹性体(dielectric elastomers,DE)和聚氯乙烯(polyvinyl chloride,PVC)凝胶致动应变和致动应力大,响应速度快,驱动寿命长,在可穿戴式人体助力和运动康复领域具有很大应用潜力。然而,这两种材料在这些领域少有研究。在这篇综述中,我们首先分别介绍DE和PVC凝胶的工作原理。接着,总结常用DE材料和PVC凝胶材料。然后,回顾这两种材料所需要的驱动电极和自传感系统。最后,介绍这两种材料在可穿戴式人体助力和运动康复领域的初步应用。

关键词:人工肌肉;智能材料;介电弹性体(DE);聚氯乙烯(PVC)凝胶;执行器;可穿戴式人体助力;运动康复

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ali M, Ueki T, Tsurumi D, et al., 2011. Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir, 27(12):7902-7908.

[2]Ali M, Ueki T, Hirai T, et al., 2013. Dielectric and electromechanical studies of plasticized poly (vinyl chloride) fabricated from plastisol. Polym Int, 62(3):501-506.

[3]Anderson IA, Gisby TA, McKay TG, et al., 2012. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys, 112(4):041101.

[4]Asaka K, Hashimoto M, 2018. Electrical properties and electromechanical modeling of plasticized PVC gel actuators. Sens Actuat B, 273:1246-1256.

[5]Asbeck AT, de Rossi SMM, Holt KG, et al., 2015. A biologically inspired soft exosuit for walking assistance. Int J Rob Res, 34(6):744-762.

[6]Awad LN, Bae J, O’Donnell K, et al., 2017. A soft robotic exosuit improves walking in patients after stroke. Sci Trans Med, 9(400):eaai9084.

[7]Bae JW, Yeo M, Shin EJ, et al., 2015. Eco-friendly plasticized poly (vinyl chloride)–acetyl tributyl citrate gels for varifocal lens. RSC Adv, 5(115):94919-94925.

[8]Bar-Cohen Y, Cardoso VF, Ribeiro C, et al., 2017. Electroactive polymers as actuators. In: Uchino K (Ed.), Advanced Piezoelectric Materials: Science and Technology. Elsevier, Amsterdam, p.319-352.

[9]Brochu P, Pei QB, 2010. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun, 31(1):10-36.

[10]Candow DG, Chilibeck PD, 2005. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol Ser A, 60(2):148-156.

[11]Carpi F, Mannini A, de Rossi D, 2008. Elastomeric contractile actuators for hand rehabilitation splints. SPIE, 6927: 692705.

[12]Carpi F, Bauer S, de Rossi D, 2010. Stretching dielectric elastomer performance. Science, 330(6012):1759-1761.

[13]Carpi F, Frediani G, Gerboni C, et al., 2014. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Med Eng Phys, 36(2):205-211.

[14]Chen BH, Bai YY, Xiang F, et al., 2014. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J Polym Sci Part B, 52(16):1055 1060.

[15]Chen D, Liang JJ, Pei QB, 2016. Flexible and stretchable electrodes for next generation polymer electronics: a review. Sci China Chem, 59(6):659-671.

[16]Cheng X, Yang WM, Cheng LS, et al., 2018a. Tunable-focus negative poly (vinyl chloride) gel Microlens driven by unilateral electrodes. J Appl Polym Sci, 135(15):46136.

[17]Cheng X, Yang WM, Zhang YC, et al., 2018b. Understanding the electro-stimulated deformation of PVC gel by in situ Raman spectroscopy. Polym Test, 65:90-96.

[18]Choi DS, Jeong J, Shin EJ, et al., 2017. Focus-tunable double convex lens based on non-ionic electroactive gel. Opt Expr, 25(17):20133-20141.

[19]Dzahir MAM, Yamamoto SI, 2014. Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics, 3(2):120-148.

[20]Furuse A, Hashimoto M, 2017. Development of novel textile and yarn actuators using plasticized PVC gel. SPIE, 10163:1016327.

[21]Gisby TA, O’Brien BM, Anderson IA, 2013. Self sensing feedback for dielectric elastomer actuators. Appl Phys Lett, 102(19):193703.

[22]Goulbourne N, Mockensturm E, Frecker M, 2005. A nonlinear model for dielectric elastomer membranes. J Appl Mech, 72(6):899-906.

[23]Gu GY, Gupta U, Zhu J, et al., 2017a. Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans Rob, 33(5):1263-1271.

[24]Gu GY, Zhu J, Zhu LM, et al., 2017b. A survey on dielectric elastomer actuators for soft robots. Bioinspir Biomim, 12(1):011003.

[25]Hashimoto M, 2011. Development of an artificial muscle using PVC gel. Proc ASME Int Mechanical Engineering Congress and Exposition, p.745-754.

[26]He Y, Eguren D, Luu TP, et al., 2017. Risk management and regulations for lower limb medical exoskeletons: a review. Med Dev (Auckl), 10:89-107.

[27]Helps T, Taghavi M, Rossiter J, 2018. Towards electroactive gel artificial muscle structures. SPIE, 10594:1059408.

[28]Hines L, Petersen K, Lum GZ, et al., 2017. Soft actuators for small-scale robotics. Adv Mater, 29(13):1603483.

[29]Hirai T, Ogiwara T, Fujii K, et al., 2009. Electrically Active artificial pupil showing amoeba-Like pseudopodial deformation. Adv Mater, 21(28):2886-2888.

[30]Hirai T, Xia H, Hirai K, 2010. The effects of adding ionic liquids to plasticized PVC gel actuators. Proc IEEE Int Conf on Mechatronics and Automation, p.71-76.

[31]Hong W, 2011. Modeling viscoelastic dielectrics. J Mech Phys Sol, 59(3):637-650.

[32]Jung K, Kim KJ, Choi HR, 2008. A self-sensing dielectric elastomer actuator. Sens Actuat A, 143(2):343-351.

[33]Kadooka K, Taya M, 2018. Review on viscoelastic behavior of dielectric polymers and their actuators. SPIE, 10594: 105940M.

[34]Kelly-Hayes M, 2010. Influence of age and health behaviors on stroke risk: lessons from longitudinal studies. J Am Geriatr Soc, 58(S2):S325-S328.

[35]Keplinger C, Kaltenbrunner M, Arnold N, et al., 2008. Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl Phys Lett, 92(19): 192903.

[36]Keplinger C, Kaltenbrunner M, Arnold N, et al., 2010. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability. PNAS, 107(10):4505 4510.

[37]Kim SY, Yeo M, Shin EJ, et al., 2015. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly (vinyl chloride)/dibutyl adipate gels. Smart Mater Struct, 24(11): 115006.

[38]Kim TJ, Liu YJ, Leng JS, 2018. Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators. J Appl Polym Sci, 135(21):46215.

[39]Kofod G, 2008. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation? J Phys D, 41(21):215405.

[40]Kofod G, Wirges W, Paajanen M, et al., 2007. Energy minimization for self-organized structure formation and actuation. Appl Phys Lett, 90(8):081916.

[41]Kollosche M, Kofod G, Suo ZG, et al., 2015. Temporal evolution and instability in a viscoelastic dielectric elastomer. J Mech Phys Sol, 76:47-64.

[42]Lee C, Kim M, Kim YJ, et al., 2017. Soft robot review. Int J Contr Autom Syst, 15(1):3-15.

[43]Li B, Chen HL, Qiang JH, et al., 2011. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J Phys D, 44(15):155301.

[44]Li TF, Keplinger C, Baumgartner R, et al., 2013. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Sol, 61(2): 611-628.

[45]Li Y, Hashimoto M, 2016. Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators. Sens Actuat A, 239:26-44.

[46]Li Y, Hashimoto M, 2017. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater Struct, 26(12):125003.

[47]Li Y, Hashimoto M, 2019. Low-voltage planar PVC gel actuator with high performances. Sens Actuat B, 282:482-489.

[48]Li Y, Maeda Y, Hashimoto M, 2015. Lightweight, soft variable stiffness gel spats for walking assistance. Int J Adv Rob Syst, 12(12):175.

[49]Liu F, Zhou JX, 2018. Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers. J Appl Mech, 85(1):011005.

[50]Liu F, Sun WJ, Zhao X, et al., 2018. Method towards optimal design of dielectric elastomer actuated soft machines. Sci China Technol Sci, 61(7):959-964.

[51]Liu HL, Zhang LQ, Yang D, et al., 2013. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2. Soft Mater, 11(3):363-370.

[52]Liu LW, Zhang Z, Li JR, et al., 2015. Stability of dielectric elastomer/carbon nanotube composites coupling electrostriction and polarization. Compos Part B, 78:35-41.

[53]Mirvakili SM, Hunter IW, 2018. Artificial muscles: mechanisms, applications, and challenges. Adv Mater, 30(6): 1704407.

[54]O’Brien B, Thode J, Anderson I, et al., 2007. Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer. SPIE, 6524:652415.

[55]Ogawa N, Hashimoto M, Takasaki M, et al., 2009. Characteristics evaluation of PVC gel actuators. Proc IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2898-2903.

[56]Park M, Park J, Jeong U, 2014. Design of conductive composite elastomers for stretchable electronics. Nano Today, 9(2):244-260.

[57]Park WH, Bae JW, Shin EJ, et al., 2016. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly (vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices. Smart Mater Struct, 25(11):115020.

[58]Park WH, Shin EJ, Yun S, et al., 2018. An enhanced soft vibrotactile actuator based on ePVC gel with silicon dioxide nanoparticles. IEEE Trans Hapt, 11(1):22-29.

[59]Patra K, Sahu RK, 2015. A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int J Mech Mater Des, 11(1):79-90.

[60]Pelrine RE, Kornbluh RD, Joseph JP, 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuat A, 64(1):77-85.

[61]Pourazadi S, Ahmadi S, Menon C, 2014. Towards the development of active compression bandages using dielectric elastomer actuators. Smart Mater Struct, 23(6):065007.

[62]Pourazadi S, Ahmadi S, Menon C, 2015. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations. Biomed Eng OnLine, 14(1):103.

[63]Pourazadi S, Shagerdmootaab A, Chan H, et al., 2017. On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater Struct, 26(11): 115007.

[64]Qin L, Tang YC, Gupta U, et al., 2018. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance. Smart Mater Struct, 27(4):045017.

[65]Rizzello G, Naso D, York A, et al., 2016. Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback. Smart Mater Struct, 25(3): 035034.

[66]Rizzello G, Fugaro F, Naso D, et al., 2018. Simultaneous self-sensing of displacement and force for soft dielectric elastomer actuators. IEEE Rob Autom Lett, 3(2):1230- 1236.

[67]Romasanta LJ, López-Manchado MA, Verdejo R, 2015. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog Polym Sci, 51:188-211.

[68]Rosset S, Shea HR, 2013. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A, 110(2): 281-307.

[69]Sahoo BP, Naskar K, Choudhary RNP, et al., 2012. Dielectric relaxation behavior of conducting carbon black reinforced ethylene acrylic elastomer vulcanizates. J Appl Polym Sci, 124(1):678-688.

[70]Shakun A, Poikelispää M, Das A, et al., 2018. Improved electromechanical response in acrylic rubber by different carbon-based fillers. Polym Eng Sci, 58(3):395-404.

[71]Sharma AK, Bajpayee S, Joglekar DM, et al., 2017. Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress. Smart Mater Struct, 26(11): 115019.

[72]Sun WJ, Liu F, Ma ZQ, et al., 2016. Soft mobile robots driven by foldable dielectric elastomer actuators. J Appl Phys, 120(8):084901.

[73]Suo ZG, 2010. Theory of dielectric elastomers. Acta Mech Sol Sin, 23(6):549-578.

[74]Tang C, Li B, Zou CB, et al., 2018. Voltage-induced wrinkle performance in a hydrogel by dielectric elastomer actuation. Polymers, 10(7):697.

[75]Tokoro H, Hashimoto M, 2014. Characteristics of a non- woven PVC gel actuator. Proc IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, p.100-105.

[76]Tran D, Li J, Xuan FZ, 2017. A method to analyze the voltage-actuation response of a pre-strained circular dielectric elastomer actuator model. J Shanghai Jiao Tong Univ (Sci), 22(3):334-342.

[77]Wang HM, Qu SX, 2016. Constitutive models of artificial muscles: a review. J Zhejiang Univ-Sci A (Appl Phys & Eng), 17(1):22-36.

[78]Weber LM, Stein J, 2018. The use of robots in stroke rehabilitation: a narrative review. NeuroRehabilitation, 43(1): 99-110.

[79]Wissler M, Mazza E, 2005. Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct, 14(6): 1396-1402.

[80]Xia H, Takasaki M, Hirai T, 2010. Actuation mechanism of plasticized PVC by electric field. Sens Actuat A, 157(2): 307-312.

[81]Xu M, Jin BY, He R, et al., 2016. Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels. Opt Expr, 24(8):8142-8148.

[82]Yamano M, Ogawa N, Hashimoto M, et al., 2009. A contraction type soft actuator using poly vinyl chloride gel. Proc IEEE Int Conf on Robotics and Biomimetics, p.745-750.

[83]Yang SY, Zhao XH, Sharma P, 2017. Avoiding the pull-in instability of a dielectric elastomer film and the potential for increased actuation and energy harvesting. Soft Matter, 13(26):4552-4558.

[84]Yuan W, Hu LB, Yu ZB, et al., 2008. Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater, 20(3):621-625.

[85]Zhang R, Iravani P, Keogh P, 2017. Closed loop control of force operation in a novel self-sensing dielectric elastomer actuator. Sens Actuat A, 264:123-132.

[86]Zhu FB, Zhang CL, Qian J, et al., 2016. Mechanics of dielectric elastomers: materials, structures, and devices. J Zhejiang Univ-Sci A (Appl Phys & Eng), 17(1):1-21.

[87]Zou J, Gu GY, 2018. Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified rate- dependent prandtl–ishlinskii model. Polymers, 10(5):525.

[88]Zulhash UM, Masaki Y, Masashi W, et al., 2001. Electrically induced creeping and bending deformation of plasticized poly (vinyl chloride). Chem Lett, 30(4):360-361.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE