Full Text:   <2290>

Summary:  <1732>

CLC number: O439

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-04-17

Cited: 0

Clicked: 7215

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Li-bo Yuan

http://orcid.org/0000-0002-2425-4553

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.4 P.481-489

http://doi.org/10.1631/FITEE.1900017


Recent developments in novel silica-based optical fibers


Author(s):  Ting-yun Wang, Fu-fei Pang, Su-juan Huang, Jian-xiang Wen, Huan-huan Liu, Li-bo Yuan

Affiliation(s):  Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China; more

Corresponding email(s):   lbyuan@vip.sina.com

Key Words:  Optical fiber, Fiber optic device, Silica-based special fiber


Ting-yun Wang, Fu-fei Pang, Su-juan Huang, Jian-xiang Wen, Huan-huan Liu, Li-bo Yuan. Recent developments in novel silica-based optical fibers[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 481-489.

@article{title="Recent developments in novel silica-based optical fibers",
author="Ting-yun Wang, Fu-fei Pang, Su-juan Huang, Jian-xiang Wen, Huan-huan Liu, Li-bo Yuan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="481-489",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900017"
}

%0 Journal Article
%T Recent developments in novel silica-based optical fibers
%A Ting-yun Wang
%A Fu-fei Pang
%A Su-juan Huang
%A Jian-xiang Wen
%A Huan-huan Liu
%A Li-bo Yuan
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 481-489
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900017

TY - JOUR
T1 - Recent developments in novel silica-based optical fibers
A1 - Ting-yun Wang
A1 - Fu-fei Pang
A1 - Su-juan Huang
A1 - Jian-xiang Wen
A1 - Huan-huan Liu
A1 - Li-bo Yuan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 481
EP - 489
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900017


Abstract: 
We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum (FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber’s center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber (SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 °C, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, micro- structured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.

新型硅基光纤研究进展

摘要:综述了两类新型光纤的最新研究进展,主要包括掺铋、铝、铈等元素的二氧化硅光纤和微结构多芯光纤。作为掺杂特殊元素的光纤,铋铝共掺杂二氧化硅光纤的荧光光谱波长为1000到1400 nm,半高宽(FWHM)约为150 nm,可用于光纤放大器和激光系统。铈掺杂光纤的激发和发射中心波长分别约为340和430 nm。在纤芯中掺杂高浓度氧化铝的蓝宝石衍生光纤(SDF)经电弧放电加热、冷却处理后可形成莫来石。SDF可进一步开发为能承受1200°C高温的法布里-珀罗干涉仪,用于高温传感。由于强消逝场,微结构多芯光纤被广泛应用于生物光纤传感、化学测量等领域。同轴芯光纤是一种具有两个同轴双波导纤芯的新型光纤。将光纤端制备成锥状,能产生紧致聚焦光场,可应用于光学捕获和微粒操纵。本文讨论了这些新型光纤的研究进展。

关键词:光纤;光纤器件;基于二氧化硅特种光纤

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alshourbagy M, Bigotta S, Herbert D, et al., 2007. Optical and scintillation properties of Ce3+ doped YALO3 crystal fibers grown by μ-pulling down technique. J Cryst Growth, 303(2):500-505.

[2]Benabid F, Knight JC, Russell PJSt, 2002. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt Expr, 10(21):1195-1203.

[3]Chen H, Buric M, Ohodnicki PR, et al., 2018. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl Phys Rev, 5(1): 011102.

[4]Cheng TL, Kanou Y, Deng DH, et al., 2014. Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference. Opt Expr, 22(11):13322-13329.

[5]Chu YS, Jing R, Zhang JZ, et al., 2016. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci Rep, 6:33865.

[6]Deng HC, Qi CC, Zhang XT, et al., 2015. Highly focused conical optical field for pico-newton scale force sensing. J Lightw Technol, 33(12):2486-2491.

[7]Deng HC, Zhang Y, Yuan TT, et al., 2017. Fiber-based optical gun for particle shooting. ACS Photon, 4(3):642-648.

[8]Dianov EM, 2012. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl, 1(5):e12.

[9]Dragic P, Ballato J, Ballato A, et al., 2012a. Mass density and the brillouin spectroscopy of aluminosilicate optical fibers. Opt Mater Expr, 2(11):1641-1654.

[10]Dragic P, Hawkins T, Foy P, et al., 2012b. Sapphire-derived all-glass optical fibres. Nat Photon, 6(9):627-633.

[11]Dvoyrin VV, Mashinsky VM, Bulatov LI, et al., 2006. Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers. Opt Lett, 31(20):2966-2968.

[12]Eggleton BJ, Kerbage C, Westbrook PS, et al., 2001. Microstructured optical fiber devices. Opt Expr, 9(13):698-713.

[13]Elsmann T, Lorenz A, Yazd NS, et al., 2014. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Opt Expr, 22(22):26825-26833.

[14]Fujimoto Y, Nakatsuka M, 2003. Optical amplification in bismuth-doped silica glass. Appl Phys Lett, 82(19):3325.

[15]Galeener FL, 1979. Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B, 19(8):4292-4297.

[16]Geernaert T, Luyckx G, Voet E, et al., 2008. Transversal load sensing with fiber Bragg gratings in microstructured optical fibers. IEEE Photon Technol Lett, 21(1):6-8.

[17]George SM, 2009. Atomic layer deposition: an overview. Chem Rev, 110(1):111-131.

[18]Gherardi L, Marelli P, Serra A, et al., 1993. Radiation effects on doped silica-core optical fibers. Nucl Phys B, 32:436- 440.

[19]Grobnic D, Mihailov SJ, Ballato J, et al., 2015. Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. Optica, 2(4):313-322.

[20]Guan CY, Tian FJ, Dai Q, et al., 2011. Characteristics of embedded-core hollow optical fiber. Opt Expr, 19(21): 20069-20078.

[21]Han YG, Lee YJ, Kim GH, et al., 2006. Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application. IEEE Photon Technol Lett, 18(16):1783-1785.

[22]Hautakorpi M, Mattinen M, Ludvigsen H, 2008. Surface- plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Expr, 16(12):8427-8432.

[23]Hong L, Pang FF, Liu HH, et al., 2017. Refractive index modulation by crystallization in sapphire-derived fiber. IEEE Photon Technol Lett, 29(9):723-726.

[24]Huang J, Lan XW, Song Y, et al., 2015. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing. IEEE Photon Technol Lett, 27(13): 1398-1401.

[25]Jewart C, Chen KP, McMillen B, et al., 2006. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. Opt Lett, 31(15):2260- 2262.

[26]Jin XQ, Gomez A, Shi K, et al., 2016. Mode coupling effects in ring-core fibers for space-division multiplexing systems. J Lightw Technol, 34(14):3365-3372.

[27]Koao LF, Swart HC, Obed RI, et al., 2011. Synthesis and characterization of Ce3+ doped silica (SiO2) nanoparticles. J Lumin, 131(6):1249-1254.

[28]Liu B, Yu ZZ, Hill C, et al., 2016. Sapphire-fiber-based distributed high-temperature sensing system. Opt Lett, 41(18):4405-4408.

[29]Liu CN, Huang YC, Lin YS, et al., 2014. Fabrication and characteristics of Ce-doped fiber for high-resolution OCT source. IEEE Photon Technol Lett, 26(15):1499-1502.

[30]Pasquarello A, Car R, 1998. Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys Rev Lett, 80(23):5145-5147.

[31]Poletti F, 2014. Nested antiresonant nodeless hollow core fiber. Opt Expr, 22(20):23807-23828.

[32]Puurunen RL, 2005. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys, 97(12):121301.

[33]Rizzolo S, Marin E, Morana A, et al., 2016. Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments. J Lightw Technol, 34(19):4460-4465.

[34]Russell PSJ, 2006. Photonic-crystal fibers. J Lightw Technol, 24(12):4729-4749.

[35]Seng F, Stan N, King R, et al., 2017. Optical sensing of electric fields in harsh environments. J Lightw Technol, 35(4): 669-676.

[36]Sun XX, Wen JX, Guo Q, et al., 2017. Fluorescence properties and energy level structure of Ce-doped silica fiber materials. Opt Mater Expr, 7(3):751-759.

[37]Tian FJ, Yuan LB, Dai Q, et al., 2011. Embedded multicore hollow fiber with high birefringence. Appl Opt, 50(33): 6162-6167.

[38]Vedda A, Chiodini N, Di Martino D, et al., 2004. Ce3+-doped fibers for remote radiation dosimetry. Appl Phys Lett, 85(26):6356.

[39]Wang AB, Gollapudi S, Murphy KA, et al., 1992. Sapphire- fiber-based intrinsic Fabry-Perot interferometer. Opt Lett, 17(14):1021-1023.

[40]Wang TY, Zeng XL, Wen JX, et al., 2009. Characteristics of photoluminescence and Raman spectra of INP doped silica fiber. Appl Surf Sci, 255(17):7791-7793.

[41]Wen JX, Wang J, Dong YH, et al., 2015. Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method. Appl Surf Sci, 349:287- 291.

[42]Xie HM, Dabkiewicz P, Ulrich R, et al., 1986. Side-hole fiber for fiber-optic pressure sensing. Opt Lett, 11(5):333-335.

[43]Xu J, Liu HH, Pang FF, et al., 2017. Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters. Opt Mater Expr, 7(4): 1406.

[44]Yan HW, Zhang ET, Zhao BY, et al., 2012. Free-space propagation of guided optical vortices excited in an annular core fiber. Opt Expr, 20(16):17904-17915.

[45]Yang XH, Zhao QK, Qi XX, et al., 2018. In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores. Sens Actuat A, 272:23-27.

[46]Yu Z, Liu ZH, Yang J, et al., 2012. A non-contact single optical fiber multi-optical tweezers probe: design and fabrication. Opt Commun, 285(20):4068-4071.

[47]Yuan LB, Liu ZH, Yang J, et al., 2008. Twin-core fiber optical tweezers. Opt Expr, 16(7):4559-4566.

[48]Yuan TT, Zhong X, Guan CY, et al., 2015. Long period fiber grating in two-core hollow eccentric fiber. Opt Expr, 23(26):33378-33385.

[49]Zhang JZ, Sathi ZM, Luo YH, et al., 2013. Toward an ultra- broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830nm laser diode pump. Opt Expr, 21(6):7786-7792.

[50]Zhao HY, Farrell G, Wang PF, et al., 2016. Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers. IEEE Photon Technol Lett, 28(4): 461-464.

[51]Zhao QC, Luo YH, Wang WY, et al., 2017. Enhanced broadband near-IR luminescence and gain spectra of bismuth/ erbium co-doped fiber by 830 and 980 nm dual pumping. AIP Adv, 7(4):045012.

[52]Zhu L, Zhu GX, Wang AD, et al., 2018. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Opt Lett, 43(8):1890-1893.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE