Full Text:   <3273>

Summary:  <1557>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-06-19

Cited: 0

Clicked: 5899

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-tao You

https://orcid.org/0000-0002-9625-5547

Hao Jiang

https://orcid.org/0000-0002-3530-5133

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.10 P.1455-1466

http://doi.org/10.1631/FITEE.1900367


Automatic synthesis of advertising images according to a specified style


Author(s):  Wei-tao You, Hao Jiang, Zhi-yuan Yang, Chang-yuan Yang, Ling-yun Sun

Affiliation(s):  Key Laboratory of Design Intelligence and Digital Creativity of Zhejiang Province, Hangzhou 310027, China ; more

Corresponding email(s):   weitao_you@zju.edu.cn, jiang_hao@zju.edu.cn, youngs@zju.edu.cn, changyuan.yangcy@alibaba-inc.com

Key Words:  Image dataset, Data-driven method, Automatic advertisement synthesis


Wei-tao You, Hao Jiang, Zhi-yuan Yang, Chang-yuan Yang, Ling-yun Sun. Automatic synthesis of advertising images according to a specified style[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(10): 1455-1466.

@article{title="Automatic synthesis of advertising images according to a specified style",
author="Wei-tao You, Hao Jiang, Zhi-yuan Yang, Chang-yuan Yang, Ling-yun Sun",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="10",
pages="1455-1466",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900367"
}

%0 Journal Article
%T Automatic synthesis of advertising images according to a specified style
%A Wei-tao You
%A Hao Jiang
%A Zhi-yuan Yang
%A Chang-yuan Yang
%A Ling-yun Sun
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 10
%P 1455-1466
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900367

TY - JOUR
T1 - Automatic synthesis of advertising images according to a specified style
A1 - Wei-tao You
A1 - Hao Jiang
A1 - Zhi-yuan Yang
A1 - Chang-yuan Yang
A1 - Ling-yun Sun
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 10
SP - 1455
EP - 1466
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900367


Abstract: 
Images are widely used by companies to advertise their products and promote awareness of their brands. The automatic synthesis of advertising images is challenging because the advertising message must be clearly conveyed while complying with the style required for the product, brand, or target audience. In this study, we proposed a data-driven method to capture individual design attributes and the relationships between elements in advertising images with the aim of automatically synthesizing the input of elements into an advertising image according to a specified style. To achieve this multi-format advertisement design, we created a dataset containing 13 280 advertising images with rich annotations that encompassed the outlines and colors of the elements, in addition to the classes and goals of the advertisements. Using our probabilistic models, users guided the style of synthesized advertisements via additional constraints (e.g., context-based keywords). We applied our method to a variety of design tasks, and the results were evaluated in several perceptual studies, which showed that our method improved users’ satisfaction by 7.1% compared to designs generated by nonprofessional students, and that more users preferred the coloring results of our designs to those generated by the color harmony model and Colormind.

针对特定风格的平面广告图像自动生成

尤伟涛1,江浩2,杨智渊1,杨昌源3,孙凌云1
1浙江省设计智能与数字创意重点实验室,中国杭州市,310027
2浙江大学国际设计研究院,中国杭州市,310058
3阿里巴巴国际用户体验事业部,中国杭州市,311121

摘要:公司常用平面广告图像宣传产品,提高品牌知名度。设计平面广告图像不仅需要清晰地传达产品信息,还需考虑广告的目标产品、产品品牌和目标用户等内容,因此自动平面广告生成具有挑战性。本文提出数据驱动的方法捕获平面广告图像中设计特征与各个元素之间的特征关系,从而根据特定的风格,将输入的元素自动合成平面广告图像。为实现多样式的平面广告生成,构建了包含13280张平面广告图像的数据集,标签涵盖图像中产品类别、元素位置、颜色等内容。利用本文的概率模型,用户通过附加的约束(例如,基于上下文关键字)引导合成广告的风格。将本文方法用于大量设计任务,并针对生成结果进行用户感知和评价实验。结果表明,本文方法生成结果的用户满意度比非专业学生的设计结果提高了7.1%,生成的广告配色也比由色彩和谐模型与Colormind得到的结果获得更多用户好感。

关键词:图像数据集;数据驱动方法;自动平面广告生成

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Antonacopoulos A, Bridson D, Papadopoulos C, et al., 2009. A realistic dataset for performance evaluation of document layout analysis. 10th Int Conf on Document Analysis and Recognition, p.296-300.

[2]Borji A, Cheng MM, Jiang H, et al., 2015. Salient object detection: a benchmark. IEEE Trans Image Process, 24(12):5706-5722.

[3]Buldas A, Kroonmaa A, Laanoja R, 2013. Keyless signatures’ infrastructure: how to build global distributed hash-trees. Nordic Conf on Secure IT Systems, p.313-320.

[4]Cao Y, Chan AB, Lau RW, 2012. Automatic stylistic manga layout. ACM Trans Graph, 31(6):141-151.

[5]Charpiat G, Hofmann M, Schölkopf B, 2008. Automatic image colorization via multimodal predictions. European Conf on Computer Vision, p.126-139.

[6]Choi J, Kim C, 2016. Object-aware image thumbnailing using image classification and enhanced detection of ROI. Multim Tools Appl, 75(23):16191-16207.

[7]Geigel J, Loui A, 2003. Using genetic algorithms for album page layouts. IEEE Multim, 10(4):16-27.

[8]Gu Z, Lou J, 2016. Data driven webpage color design. Comput Aid Des, 77:46-59.

[9]Hussain Z, Zhang M, Zhang X, et al., 2017. Automatic understanding of image and video advertisements. IEEE Conf on Computer Vision and Pattern Recognition, p.1705-1715.

[10]Jahanian A, Liu J, Tretter DR, et al., 2012. Automatic design of magazine covers. IS&T/SPIE Electronic Imaging, Article 83020N.

[11]Jiang B, Zhang L, Lu H, et al., 2013. Saliency detection via absorbing Markov chain. IEEE Int Conf on Computer Vision, p.1665-1672.

[12]Labrecque LI, Milne GR, 2012. Exciting red and competent blue: the importance of color in marketing. J Acad Mark Sci, 40(5):711-727.

[13]Li J, Xu T, Zhang J, et al., 2019. LayoutGAN: generating graphic layouts with wireframe discriminator. https://arxiv.org/abs/1901.06767

[14]Li X, Zhao H, Nie G, et al., 2015. Image recoloring using geodesic distance based color harmonization. Comput Vis Media, 1(2):143-155.

[15]Li Y, Qi H, Dai J, et al., 2017. Fully convolutional instance-aware semantic segmentation. IEEE Conf on Computer Vision and Pattern Recognition, p.2359-2367.

[16]Lin S, Hanrahan P, 2013. Modeling how people extract color themes from images. SIGCHI Conf on Human Factors in Computing Systems, p.3101-3110.

[17]Lin S, Ritchie D, Fisher M, et al., 2013. Probabilistic color-by-numbers: suggesting pattern colorizations using factor graphs. ACM Trans Graph, 32(4):37.

[18]Liu KL, Li W, Yang CY, et al., 2019. Intelligent design of multimedia content in Alibaba. Front Inform Technol Electron Eng, 20(12):1657-1664.

[19]O’Donovan P, Agarwala A, Hertzmann A, 2011. Color compatibility from large datasets. ACM Trans Graph, 30(4):63-75.

[20]O’Donovan P, Agarwala A, Hertzmann A, 2014. Learning layouts for single-pagegraphic designs. IEEE Trans Vis Comput Graph, 20(8):1200-1213.

[21]O’Donovan P, Agarwala A, Hertzmann A, 2015. DesignScape: design with interactive layout suggestions. 33rd Annual ACM Conf on Human Factors in Computing Systems, p.1221-1224.

[22]Qiang YT, Fu YW, Yu X, et al., 2019. Learning to generate posters of scientific papers by probabilistic graphical models. J Comput Sci Techn, 34(1):155-169.

[23]Russell BC, Torralba A, Murphy KP, et al., 2008. Labelme: a database and web-based tool for image annotation. Int J Comput Vis, 77(1-3):157-173.

[24]Scott DW, Sain SR, 2005. 9 – multidimensional density estimation. Handbook Stat, 24:229-261.

[25]Seo S, Park Y, Ostromoukhov V, 2013. Image recoloring using linear template mapping. Multim Tools Appl, 64(2):293-308.

[26]Tang YC, Huang JJ, Yao MT, et al., 2019. A review of design intelligence: progress, problems, and challenges. Front Inform Technol Electron Eng, 20(12):1595-1617.

[27]Tokumaru M, Muranaka N, Imanishi S, 2002. Color design support system considering color harmony. IEEE World Congress on Computational Intelligence, p.378-383.

[28]Tuch AN, Bargas-Avila JA, Opwis K, 2010. Symmetry and aesthetics in website design: it’s a man’s business. Comput Human Behav, 26(6):1831-1837.

[29]Wang TC, Liu MY, Zhu JY, et al., 2018. High-resolution image synthesis and semantic manipulation with conditional GANs. IEEE Conf on Computer Vision and Pattern Recognition, p.8798-8807.

[30]Xu T, Zhang P, Huang Q, et al., 2018. AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. IEEE Conf on Computer Vision and Pattern Recognition, p.1316-1324.

[31]Yang X, Mei T, Xu YQ, et al., 2016. Automatic generation of visual-textual presentation layout. ACM Trans Multim Comput Commun Appl, 12(2):33-55.

[32]You WT, Sun LY, Yang ZY, et al., 2019. Automatic advertising image color design incorporating a visual color analyzer. J Comput Lang, 55:100910.

[33]Yu LF, Yeung SK, Tang CK, et al., 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans Graph, 30(4):86:1-86:12.

[34]Zhang Y, Hu K, Ren P, et al., 2017. Layout style modeling for automating banner design. Thematic Workshops of ACM Multimedia, p.451-459.

[35]Zheng X, Qiao X, Cao Y, et al., 2019. Content-aware generative modeling of graphic design layouts. ACM Trans Graph, 38(4):133.

[36]Zhu JY, Park T, Isola P, et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE Int Conf on Computer Vision, p.2223-2232.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE