Full Text:   <5846>

Summary:  <1063>

CLC number: TP13

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-09-02

Cited: 0

Clicked: 6903

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yan Wei

https://orcid.org/0000-0002-9818-8034

Yueying Wang

https://orcid.org/0000-0001-9737-6765

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.12 P.1610-1624

http://doi.org/10.1631/FITEE.2000692


Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints


Author(s):  Yan Wei, Jun Luo, Huaicheng Yan, Yueying Wang

Affiliation(s):  School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   wyy676@126.com

Key Words:  Event-triggered control, Nonlinear mapping, Adaptive fuzzy control, Finite-time, State constraints


Yan Wei, Jun Luo, Huaicheng Yan, Yueying Wang. Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1610-1624.

@article{title="Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints",
author="Yan Wei, Jun Luo, Huaicheng Yan, Yueying Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="12",
pages="1610-1624",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000692"
}

%0 Journal Article
%T Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints
%A Yan Wei
%A Jun Luo
%A Huaicheng Yan
%A Yueying Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 12
%P 1610-1624
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000692

TY - JOUR
T1 - Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints
A1 - Yan Wei
A1 - Jun Luo
A1 - Huaicheng Yan
A1 - Yueying Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 12
SP - 1610
EP - 1624
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000692


Abstract: 
This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems. To prevent asymmetric time-varying state constraints from being violated, a tan-type nonlinear mapping is established to transform the considered system into an equivalent “non-constrained” system. By employing a smooth switch function in the virtual control signals, the singularity in the traditional finite-time dynamic surface control can be avoided. Fuzzy logic systems are used to compensate for the unknown functions. A suitable event-triggering rule is introduced to determine when to transmit the control laws. Through Lyapunov analysis, the closed-loop system is proved to be semi-globally practical finite-time stable, and the state constraints are never violated. Simulations are provided to evaluate the effectiveness of the proposed approach.

不对称时变状态约束下非线性系统自适应有限时间事件触发控制

魏岩1,罗均2,严怀成3,王曰英2
1上海交通大学航空航天学院,中国上海市,200240
2上海大学机电工程与自动化学院,中国上海市,200444
3华东理工大学信息科学与工程学院,中国上海市,200237
摘要:研究了状态约束下多输入多输出不确定非线性系统的自适应有限时间事件触发控制问题。为防止系统状态违反非对称时变约束,建立tan型非线性映射函数,将所考虑的系统转化为等价无约束系统。在虚拟控制信号中引入光滑切换函数,以避免传统有限时间动态面控制方法在零附近的奇异现象。同时,采用模糊逻辑系统补偿未知非线性函数。引入合适的事件触发机制确定何时控制律更新。利用李雅普诺夫稳定性理论分析,证明闭环系统是半全局最终有限时间稳定的,且不违反状态约束。最后,通过仿真实例验证了所设计控制方法的有效性。

关键词:事件触发控制;非线性映射;自适应模糊控制;有限时间;状态约束

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen CLP, Liu YJ, Wen GX, 2014. Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans Cybern, 44(5):583-593.

[2]Chen MH, Sun J, Karimi HR, 2020. Input-output finite-time generalized dissipative filter of discrete time-varying systems with quantization and adaptive event-triggered mechanism. IEEE Trans Cybern, 50(12):5061-5073.

[3]Cui B, Xia YQ, Liu K, et al., 2020. Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: a smooth control approach. IEEE Trans Neur Netw Learn Syst, 31(11):4920-4932.

[4]Cui RX, Yang CG, Li Y, et al., 2017. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans Syst Man Cybern Syst, 47(6):1019-1029.

[5]Demirel B, Leong AS, Gupta V, et al., 2019. Tradeoffs in stochastic event-triggered control. IEEE Trans Autom Contr, 64(6):2567-2574.

[6]Dong WJ, Farrell JA, Polycarpou MM, et al., 2012. Command filtered adaptive backstepping. IEEE Trans Contr Syst Technol, 20(3):566-580.

[7]Ge SS, Wang C, 2004. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neur Netw, 15(3):674-692.

[8]Guo T, Wu XW, 2014. Backstepping control for output-constrained nonlinear systems based on nonlinear mapping. Neur Comput Appl, 25(7-8):1665-1674.

[9]Hardy GH, Littlewood JE, Polya G, 1952. Inequalities. Cambridge University Press, Cambridge, UK.

[10]Hua Y, Zhang TP, 2020a. Adaptive control of pure-feedback nonlinear systems with full-state time-varying constraints and unmodeled dynamics. Int J Adapt Contr Signal Process, 34(2):183-198.

[11]Hua Y, Zhang TP, 2020b. Adaptive neural event-triggered control of MIMO pure-feedback systems with asymmetric output constraints and unmodeled dynamics. IEEE Access, 8:37684-37696.

[12]Jin X, 2016. Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems. Int J Robust Nonlin Contr, 26(2):286-302.

[13]Li BW, Liu Y, Kou KI, et al., 2018. Event-triggered control for the disturbance decoupling problem of Boolean control networks. IEEE Trans Cybern, 48(9):2764-2769.

[14]Li GJ, 2017. Adaptive tracking control for air-breathing hypersonic vehicles with state constraints. Front Inform Technol Electron Eng, 18(5):599-614.

[15]Li YM, Li KW, Tong SC, 2019. Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Trans Fuzzy Syst, 27(1):96-110.

[16]Liu TF, Jiang ZP, 2015. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans Autom Contr, 60(8):2072-2085.

[17]Liu Y, Jiang BX, Lu JQ, et al., 2020. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft. IEEE Trans Syst Man Cybern Syst, 50(9):3290-3299.

[18]Liu YJ, Ma L, Liu L, et al., 2020. Adaptive neural network learning controller design for a class of nonlinear systems with time-varying state constraints. IEEE Trans Neur Netw Learn Syst, 31(1):66-75.

[19]Liu YL, Ma HJ, Ma H, 2018. Adaptive fuzzy fault-tolerant control for uncertain nonlinear switched stochastic systems with time-varying output constraints. IEEE Trans Fuzzy Syst, 26(5):2487-2498.

[20]Miao P, Shen YJ, Li YJ, et al., 2016. Finite-time recurrent neural networks for solving nonlinear optimization problems and their application. Neurocomputing, 177:120-129.

[21]Polycarpou MM, 1996. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Contr, 41(3):447-451.

[22]Qian CJ, Lin W, 2001. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst Contr Lett, 42(3):185-200.

[23]Qiu JB, Sun KK, Rudas IJ, et al., 2020. Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans Cybern, 50(7):2905-2915.

[24]Sahoo A, Xu H, Jagannathan S, 2016. Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Trans Neur Netw Learn Syst, 27(3):497-509.

[25]Swaroop D, Hedrick JK, Yip PP, et al., 2000. Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Contr, 45(10):1893-1899.

[26]Tee KP, Ge SS, 2011. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int J Contr, 84(12):2008-2023.

[27]Tee KP, Ge SS, 2012. Control of state-constrained nonlinear systems using integral barrier Lyapunov functionals. 51st IEEE Conf on Decision and Control, p.3239-3244.

[28]Tee KP, Ge SS, Tay EH, 2009. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918-927.

[29]Tian QY, Wei JH, Fang JH, et al., 2016. Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter. Front Inform Technol Electron Eng, 17(1):55-66.

[30]Tong SC, Li YM, Shi P, 2012. Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans Fuzzy Syst, 20(4):771-785.

[31]Wang F, Chen B, Liu XP, et al., 2018. Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans Fuzzy Syst, 26(3):1207-1216.

[32]Wang LJ, Chen CLP, Li HY, 2020. Event-triggered adaptive control of saturated nonlinear systems with time-varying partial state constraints. IEEE Trans Cybern, 50(4):1485-1497.

[33]Wang M, Zhang SY, Chen B, et al., 2010. Direct adaptive neural control for stabilization of nonlinear time-delay systems. Sci China Inform Sci, 53(4):800-812.

[34]Wang YC, Zheng WX, Zhang HG, 2017. Dynamic event-based control of nonlinear stochastic systems. IEEE Trans Autom Contr, 62(12):6544-6551.

[35]Wang YC, Zhang JX, Zhang HG, et al., 2020. Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients. IEEE Trans Cybern, early access.

[36]Wang YY, Xia YQ, Ahn CK, et al., 2019. Exponential stabilization of Takagi-Sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method. IEEE Trans Syst Man Cybern Syst, 49(2):444-454.

[37]Wei Y, Zhou PF, Wang YY, et al., 2019. Adaptive neural dynamic surface control of MIMO uncertain nonlinear systems with time-varying full state constraints and disturbances. Neurocomputing, 364:16-31.

[38]Wei Y, Zhou PF, Liang YZ, et al., 2020a. Adaptive finite-time neural backstepping control for multi-input and multi-output state-constrained nonlinear systems using tangent-type nonlinear mapping. Int J Robust Nonlin Contr, 30(14):5559-5578.

[39]Wei Y, Wang YY, Ahn CK, et al., 2020b. IBLF-based finite-time adaptive fuzzy output-feedback control for uncertain MIMO nonlinear state-constrained systems. IEEE Trans Fuzzy Syst, early access.

[40]Xia JW, Zhang J, Sun W, et al., 2019. Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst, 49(7):1541-1548.

[41]Xing LT, Wen CY, Liu ZT, et al., 2017. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans Autom Contr, 62(4):2071-2076.

[42]Xing LT, Wen CY, Liu ZT, et al., 2019. Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans Autom Contr, 64(1):290-297.

[43]Xu T, Hao YQ, Duan ZS, 2020. Fully distributed containment control for multiple Euler-Lagrange systems over directed graphs: an event-triggered approach. IEEE Trans Circ Syst I Reg Papers, 67(6):2078-2090.

[44]Xue T, Wang ZW, Zhang T, et al., 2020. Fixed-time constrained acceleration reconstruction scheme for robotic exoskeleton via neural networks. Front Inform Technol Electron Eng, 21(5):705-722.

[45]Yu JP, Shi P, Dong WJ, et al., 2015. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans Ind Electron, 62(9):5962-5970.

[46]Yu JP, Yu H, Lin CS, et al., 2018. Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans Cybern, 48(8):2378-2387.

[47]Zhang TP, Xia MZ, Yi Y, et al., 2017. Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. IEEE Trans Syst Man Cybern Syst, 47(8):2378-2387.

[48]Zhang TP, Liu HQ, Xia MZ, et al., 2018. Adaptive neural control of MIMO uncertain nonlinear systems with unmodeled dynamics and output constraint. Int J Adapt Contr Signal Process, 32(12):1731-1747.

[49]Zhao K, Song YD, 2019. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans Autom Contr, 64(3):1265-1272.

[50]Zhao K, Song YD, 2020. Neuroadaptive robotic control under time-varying asymmetric motion constraints: a feasibility-condition-free approach. IEEE Trans Cybern, 50(1):15-24.

[51]Zhu SY, Liu Y, Lou YJ, et al., 2020. Stabilization of logical control networks: an event-triggered control approach. Sci China Inform Sci, 63(1):112203.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE