Full Text:   <695>

Summary:  <294>

CLC number: N941

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-03-31

Cited: 0

Clicked: 1564

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Weigang SUN

https://orcid.org/0000-0001-8699-5392

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.9 P.1349-1356

http://doi.org/10.1631/FITEE.2200400


Impact of distance between two hubs on the network coherence of tree networks


Author(s):  Daquan LI, Weigang SUN, Hongxiang HU

Affiliation(s):  School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China

Corresponding email(s):   wgsun@hdu.edu.cn

Key Words:  Consensus, Coherence, Distance, Average path length


Daquan LI, Weigang SUN, Hongxiang HU. Impact of distance between two hubs on the network coherence of tree networks[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(9): 1349-1356.

@article{title="Impact of distance between two hubs on the network coherence of tree networks",
author="Daquan LI, Weigang SUN, Hongxiang HU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="9",
pages="1349-1356",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200400"
}

%0 Journal Article
%T Impact of distance between two hubs on the network coherence of tree networks
%A Daquan LI
%A Weigang SUN
%A Hongxiang HU
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 9
%P 1349-1356
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200400

TY - JOUR
T1 - Impact of distance between two hubs on the network coherence of tree networks
A1 - Daquan LI
A1 - Weigang SUN
A1 - Hongxiang HU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 9
SP - 1349
EP - 1356
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200400


Abstract: 
We study the impact of the distance between two hubs on network coherence defined by Laplacian eigenvalues. Network coherence is a measure of the extent of consensus in a linear system with additive noise. To obtain an exact determination of coherence based on the distance, we choose a family of tree networks with two hubs controlled by two parameters. Using the tree’s regular structure, we obtain analytical expressions of the coherences with regard to network parameters and the network size. We then demonstrate that a shorter distance and a larger difference in the degrees of the two hubs lead to a higher coherence. With the same network size and distance, the best coherence occurs in the tree with the largest difference in the hub’s degrees. Finally, we establish a correlation between network coherence and average path length and find that they behave linearly.

中心节点距离对树状网络一致性的影响

李达权,孙伟刚,胡鸿翔
杭州电子科技大学理学院,中国杭州市,310018
摘要:本文研究了两个中心节点之间的距离对网络一致性的影响。网络一致性由拉普拉斯特征值所量化,可用来衡量线性系统对外部噪声的一致性程度。为获得网络一致性关于距离的精确表达式,选取一类由网络参数控制的具有两个中心节点的树状网络。利用其规则的拓扑结构,得到一致性关于网络参数和网络规模的解析表达式。证明两个中心节点距离越短,度的差异性越大,网络一致性越好。在相同网络规模和距离下,最大的中心节点度差异会导致最优的一致性。最后,建立了网络一致性与平均路径长度之间的联系,发现它们呈线性关系。

关键词:一致性;距离;平均路径长度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andrade JS, Herrmann HJ, Andrade RFS, et al., 2005. Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. Phys Rev Lett, 94(1):018702.

[2]Bamieh B, Jovanovic MR, Mitra P, et al., 2012. Coherence in large-scale networks: dimension-dependent limitations of local feedback. IEEE Trans Autom Contr, 57(9):2235-2249.

[3]Barabási AL, Ravasz E, Vicsek T, 2001. Deterministic scale-free networks. Phys A Stat Mech Appl, 299(3-4):559-564.

[4]Chen J, Sun WG, Wang J, 2023. Topology design for leader-follower coherence in noisy asymmetric networks. Phys Scr, 98(1):015215.

[5]Comellas F, Sampels M, 2002. Deterministic small-world networks. Phys A Stat Mech Appl, 309(1-2):231-235.

[6]Comellas F, Ozón J, Peters JG, 2000. Deterministic small-world communication networks. Inform Process Lett, 76(1-2):83-90.

[7]Dai MF, Wang XQ, Zong Y, et al., 2017. First-order network coherence and eigentime identity on the weighted Cayley networks. Fractals, 25(5):1750049.

[8]Gao HP, Zhu J, Chen X, et al., 2022. Coherence analysis of symmetric star topology networks. Front Phys, 10:876994.

[9]Gao L, Peng JH, Tang CM, 2021. Optimizing the first-passage process on a class of fractal scale-free trees. Fract Fract, 5(4):184.

[10]Gao W, Yan L, Li YF, et al., 2022a. Network performance analysis from binding number prospect. J Amb Intell Human Comput, 13:1259-1267.

[11]Gao W, Chen YJ, Zhang YQ, 2022b. Viewing the network parameters and H-factors from the perspective of geometry. Int J Intell Syst, 37(10):6686-6728.

[12]Grone R, Merris R, Sunder V, 1990. The Laplacian spectrum of a graph. SIAM J Matr Anal Appl, 11(2):218-238.

[13]Hong MD, Sun WG, Liu SY, et al., 2020. Coherence analysis and Laplacian energy of recursive trees with controlled initial states. Front Inform Technol Electron Eng, 21(6):931-938.

[14]Hu TC, Li LL, Wu YQ, et al., 2022. Consensus dynamics in noisy trees with given parameters. Mod Phys Lett B, 36(7):2150608.

[15]Hu X, Zhang ZF, Li CD, 2021. Consensus of multi-agent systems with dynamic join characteristics under impulsive control. Front Inform Technol Electron Eng, 22(1):120-133.

[16]Imran M, Hafi S, Gao W, et al., 2017. On topological properties of Sierpinski networks. Chaos Sol Fract, 98:199-204.

[17]Jing T, Yang L, Sun WG, 2021. Exact calculations of network coherence in weighted ring-trees networks and recursive trees. Phys Scr, 96(8):085217.

[18]Karayannakis D, Aivalis CJ, 2018. Reciprocal Vieta-type formulas and some applications. J Discr Math Sci Cryptogr, 21(1):35-39.

[19]Li QS, Zaman S, Sun WT, et al., 2020. Study on the normalized Laplacian of a penta-graphene with applications. Int J Quant Chem, 120(9):e26154.

[20]Liu JB, Bao Y, Zheng WT, et al., 2021. Network coherence analysis on a family of nested weighted n-polygon networks. Fractals, 29(8):2150260.

[21]Liu JB, Bao Y, Zheng WT, 2022. Analyses of some structural properties on a class of hierarchical scale-free networks. Fractals, 30(7):2250136.

[22]Lu MB, Liu L, 2019. Leader-following consensus of second-order nonlinear multi-agent systems subject to disturbances. Front Inform Technol Electron Eng, 20(1):88-94.

[23]Newman MEJ, 2003. The structure and function of complex networks. SIAM Rev, 45(2):167-256.

[24]Olfati-Saber R, Murray RM, 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Contr, 49(9):1520-1533.

[25]Patterson S, Bamieh B, 2014. Consensus and coherence in fractal networks. IEEE Trans Contr Netw Syst, 1(4):338-348.

[26]Peng JH, Xiong J, Xu GA, 2014. Analysis of diffusion and trapping efficiency for random walks on non-fractal scale-free trees. Phys A Stat Mech Appl, 407:231-244.

[27]Rao S, Ghose D, 2014. Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles. IEEE Trans Contr Syst Technol, 22(5):1964-1972.

[28]Ren W, Beard RW, Atkins EM, 2007. Information consensus in multivehicle cooperative control. IEEE Contr Syst Mag, 27(2):71-82.

[29]Sun WG, Ding QY, Zhang JY, et al., 2014. Coherence in a family of tree networks with an application of Laplacian spectrum. Chaos, 24(4):043112.

[30]Wang L, Liu ZX, 2009. Robust consensus of multi-agent systems with noise. Sci China Ser F Inform Sci, 52(5):824-834.

[31]Xiao L, Boyd S, Kim SJ, 2007. Distributed average consensus with least-mean-square deviation. J Parall Distrib Comput, 67(1):33-46.

[32]Yi YH, Yang BJ, Zhang ZB, et al., 2022. Biharmonic distance-based performance metric for second-order noisy consensus networks. IEEE Trans Inform Theory, 68(2):1220-1236.

[33]Yu WW, Chen GR, Cao M, 2010. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 46(6):1089-1095.

[34]Yu XD, Zaman S, Ullah A, et al., 2023. Matrix analysis of hexagonal model and its applications in global mean-first-passage time of random walks. IEEE Access, 11:10045-10052.

[35]Zaman S, 2022. Spectral analysis of three invariants associated to random walks on rounded networks with 2n-pentagons. Int J Comput Math, 99(3):465-485.

[36]Zaman S, Ullah A, 2023. Kemeny’s constant and global mean first passage time of random walks on octagonal cell network. Math Methods Appl Sci, 46(8):9177-9186.

[37]Zaman S, Koam ANA, Khabyah AA, et al., 2022. The Kemeny’s constant and spanning trees of hexagonal ring network. CMC-Comput Mater Contin, 73:6347-6365.

[38]Zhang HF, Zhang J, Zhou CS, et al., 2010. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination. New J Phys, 12(2):023015.

[39]Zhang LZ, Li YY, Lou JG, et al., 2022. Bipartite asynchronous impulsive tracking consensus for multi-agent systems. Front Inform Technol Electron Eng, 23(10):1522-1532.

[40]Zhang ZZ, Zhou SG, Xie WL, et al., 2009. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect. Phys Rev E, 79(6):061113.

[41]Zhu J, Huang D, Jiang HJ, et al., 2021. Synchronizability of multi-layer variable coupling windmill-type networks. Mathematics, 9(21):2721.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE