Full Text:   <408>

Summary:  <46>

Suppl. Mater.: 

CLC number: TP331.1

On-line Access: 2025-04-03

Received: 2024-06-14

Revision Accepted: 2024-09-26

Crosschecked: 2025-04-07

Cited: 0

Clicked: 333

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Mengyu ZHANG

https://orcid.org/0009-0001-4414-1038

Zhenxue HE

https://orcid.org/0000-0001-7041-8582

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.3 P.415-426

http://doi.org/10.1631/FITEE.2400513


A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm


Author(s):  Mengyu ZHANG, Zhenxue HE, Yijin WANG, Xiaojun ZHAO, Xiaodan ZHANG, Limin XIAO, Xiang WANG

Affiliation(s):  Intelligent Agricultural Equipment Research Institute, Hebei Agricultural University, Baoding 071001, China; more

Corresponding email(s):   hezhenxue@buaa.edu.cn

Key Words:  Power optimization, Multi-strategy fusion memetic algorithm (MFMA), Mixed polarity Reed‍, –, ‍, Muller (MPRM), Combinatorial optimization problem


Mengyu ZHANG, Zhenxue HE, Yijin WANG, Xiaojun ZHAO, Xiaodan ZHANG, Limin XIAO, Xiang WANG. A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(3): 415-426.

@article{title="A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm",
author="Mengyu ZHANG, Zhenxue HE, Yijin WANG, Xiaojun ZHAO, Xiaodan ZHANG, Limin XIAO, Xiang WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="3",
pages="415-426",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400513"
}

%0 Journal Article
%T A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm
%A Mengyu ZHANG
%A Zhenxue HE
%A Yijin WANG
%A Xiaojun ZHAO
%A Xiaodan ZHANG
%A Limin XIAO
%A Xiang WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 3
%P 415-426
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400513

TY - JOUR
T1 - A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm
A1 - Mengyu ZHANG
A1 - Zhenxue HE
A1 - Yijin WANG
A1 - Xiaojun ZHAO
A1 - Xiaodan ZHANG
A1 - Limin XIAO
A1 - Xiang WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 3
SP - 415
EP - 426
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400513


Abstract: 
The power optimization of %29&ck%5B%5D=abstract&ck%5B%5D=keyword'>mixed polarity Reed;;;muller (MPRM) logic circuits is a classic combinatorial optimization problem. Existing optimization approaches often suffer from slow convergence and a propensity to converge to local optima, limiting their effectiveness in achieving optimal power efficiency. First, we propose a novel multi-strategy fusion memetic algorithm (MFMA). MFMA integrates global exploration via the chimp optimization algorithm with local exploration using the coati optimization algorithm based on the optimal position learning and adaptive weight factor (COA-OLA), complemented by population management through truncation selection. Second, leveraging MFMA, we propose a power optimization approach for MPRM logic circuits that searches for the best polarity configuration to minimize circuit power. Experimental results based on Microelectronics Center of North Carolina (MCNC) benchmark circuits demonstrate significant improvements over existing power optimization approaches. MFMA achieves a maximum power saving rate of 72.30% and an average optimization rate of 43.37%; it searches for solutions faster and with higher quality, validating its effectiveness and superiority in power optimization.

一种基于MFMA的MPRM逻辑电路功耗优化方法

张梦雨1,2,何振学1,2,王伊瑾1,2,赵晓君1,2,张晓丹1,2,肖利民3,王翔4
1河北农业大学智能农业装备研究院,中国保定市,071001
2河北农业大学河北省农业大数据重点实验室,中国保定市,071001
3北京航空航天大学计算机学院,中国北京市,100191
4北京航空航天大学电子信息工程学院,中国北京市,100191
摘要:混合极性Reed-Muller(MPRM)逻辑电路功耗优化是一种典型的组合优化问题。现有功耗优化方法存在收敛速度慢、易陷入局部最优等问题,在实现最佳功耗方面的有效性十分有限。首先,本文提出一种多策略融合模因算法(MFMA),利用黑猩猩优化算法进行全局勘探,利用基于最优位置学习和自适应权重因子的浣熊优化算法(COA-OLA)进行局部探索,最后采用截断选择算法进行新种群选择。其次,基于MFMA提出一种MPRM逻辑电路功耗优化方法,通过寻找最佳极性配置,使得电路功耗最小化。基于MCNC基准电路的实验结果表明,与现有的功耗优化方法相比,本功耗优化方法有显著的改进。MFMA实现最高功耗优化率为72.30%,平均优化率为43.37%。同时,MFMA搜索解的速度更快且质量更好,验证了其在功耗优化方面的有效性和优越性。

关键词:功耗优化;多策略融合模因算法(MFMA);混合极性Reed-Muller(MPRM);组合优化问题

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Dehghani M, Montazeri Z, Trojovská E, et al., 2023. Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst, 259:110011.

[2]Hasanien HM, Alsaleh I, Alassaf A, et al., 2023. Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles. Energy, 283:129069.

[3]He JC, He ZX, Liu J, et al., 2024. An effective power optimization approach based on whale optimization algorithm with two-populations and mutation strategies. Chin J Electron, 33(2):423-435.

[4]Huan GY, Hu JB, He YF, et al., 2021. Machine learning for electronic design automation: a survey. ACM Trans Des Autom Electron Syst, 26(5):40.

[5]Ju XX, Yuan S, Yang XS, et al., 2024. Fixed-time neurodynamic optimization algorithms and application to circuits design. IEEE Trans Circ Syst I Regul Pap, 71(5):‍2171-2181.

[6]Khatana V, Saraswat G, Patel S, et al., 2024. GradConsensus: linearly convergent algorithm for reducing disagreement in multi-agent optimization. IEEE Trans Netw Sci Eng, 11(1):1251-1264.

[7]Khishe M, Mosavi MR, 2020. Chimp optimization algorithm. Expert Syst Appl, 149:113338.

[8]Li HW, Chen HL, Li YX, et al., 2024. Reverse-designed photonic crystal fiber-based polarization filter with optimal performance. Opt Laser Technol, 168:109909.

[9]Liu AD, Fu JY, Zhan SW, et al., 2024. A policy searched-based optimization algorithm for obstacle avoidance in robot manipulators. IEEE Trans Ind Electron, 71(9):‍11262-11271.

[10]Lopera DS, Servadei L, Kiprit GN, et al., 2021. A survey of graph neural networks for electronic design automation. Proc ACM/IEEE 3rd Workshop on Machine Learning for CAD, p.1-6.

[11]Moscato P, 1989. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. C3P Report No. 826, California Institute of Technology, Rasadena, California, USA.

[12]Qin DG, He ZX, Zhao XJ, et al., 2023. Area and power optimization for fixed polarity Reed‍–‍Muller logic circuits based on multi-strategy multi-objective artificial bee colony algorithm. Eng Appl Artif Intell, 121:105906.

[13]Suau M, Zegard T, 2023. Topology optimization with optimal design subdomain selection. Struct Multidiscipl Optim, 66(12):246.

[14]Wang WC, Tian WC, Chau KW, et al., 2023. An improved bald eagle search algorithm with Cauchy mutation and adaptive weight factor for engineering optimization. Comput Model Eng Sci, 136(2):1603-1642.

[15]Wang X, Zhang R, Wang WK, et al., 2015. Polarity searching for MPRM logic circuit based on improved adaptive genetic algorithm. Proc IEEE 12th Int Conf on Ubiquitous Intelligence and Computing and IEEE 12th Int Conf on Autonomic and Trusted Computing and IEEE 15th Int Conf on Scalable Computing and Communications and Its Associated Workshops, p.1354-1358.

[16]Yıldız BS, Kumar S, Panagant N, et al., 2023. A novel hybrid arithmetic optimization algorithm for solving constrained optimization problems. Knowl-Based Syst, 271:110554.

[17]Yin H, Lyu YH, Xu LW, et al., 2025. Intelligent optimization algorithm for green IoV networks based on SSA. IEEE Trans Veh Technol, 74(2):2251-2260.

[18]Zhao BW, Chen WN, Wei FF, et al., 2024. PEGA: a privacy-preserving genetic algorithm for combinatorial optimization. IEEE Trans Cybern, 54(6):3638-3651.

[19]Zhao GC, Zeng ZW, Wang XL, et al., 2024. Efficient ternary logic circuits optimized by ternary arithmetic algorithms. IEEE Trans Emerg Top Comput, 12(3):826-839.

[20]Zhou YH, He ZX, Chen C, et al., 2022. An efficient power optimization approach for fixed polarity Reed‍–‍Muller logic circuits based on metaheuristic optimization algorithm. IEEE Trans Comput-Aided Des Integr Circ Syst, 41(12):5380-5393.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE