CLC number: TN929.5
On-line Access: 2024-01-26
Received: 2023-03-01
Revision Accepted: 2024-01-26
Crosschecked: 2023-09-18
Cited: 0
Clicked: 1094
Citations: Bibtex RefMan EndNote GB/T7714
Danning XU, Yu HAN, Xiao LI, Jinghe WANG, Shi JIN. Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1717-1727.
@article{title="Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model",
author="Danning XU, Yu HAN, Xiao LI, Jinghe WANG, Shi JIN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1717-1727",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300136"
}
%0 Journal Article
%T Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model
%A Danning XU
%A Yu HAN
%A Xiao LI
%A Jinghe WANG
%A Shi JIN
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1717-1727
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300136
TY - JOUR
T1 - Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model
A1 - Danning XU
A1 - Yu HAN
A1 - Xiao LI
A1 - Jinghe WANG
A1 - Shi JIN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1717
EP - 1727
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300136
Abstract: reconfigurable intelligent surface (RIS) is widely accepted as a potential technology to assist in communication between base stations (BSs) and users in edge areas. We study the energy efficiency of a RIS-assisted multi-cell communication system with a realistic RIS power consumption model. With the goal of maximizing the energy efficiency of the system, we optimize the transmit beamforming vectors at the BS and the RIS phase shift matrix by a proposed alternative optimization algorithm. First, the transmit beamforming vector is optimized by solving the transformed weighted minimum mean square error (WMMSE) problem. Subsequently, to solve the inconvenience incurred by the discrete relationship between the RIS reflecting unit power consumption and its discrete phase shift, we use a continuous function to approximate their relationship. With this approximation, we can use the majorization minimization (MM) technique to optimize the continuous RIS phase shifts, and then quantize the obtained phase shifts to discrete ones. Simulation results demonstrate that the energy efficiency of the system is effectively optimized by the proposed algorithm.
[1]Chen J, Xie YH, Mu XD, et al., 2022. Energy efficient resource allocation for IRS assisted CoMP systems. IEEE Trans Wirel Commun, 21(7):5688-5702.
[2]Christensen SS, Agarwal R, de Carvalho E, et al., 2008. Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans Wirel Commun, 7(12):4792-4799.
[3]Cui TJ, Qi MQ, Wan X, et al., 2014. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 3(10):e218.
[4]Cui TJ, Liu S, Zhang L, 2017. Information metamaterials and metasurfaces. J Mater Chem C, 5(15):3644-3668.
[5]di Renzo M, Zappone A, Debbah M, et al., 2020. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Sel Areas Commun, 38(11):2450-2525.
[6]Feng KM, Wang QS, Li X, et al., 2020. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems. IEEE Wirel Commun Lett, 9(5):745-749.
[7]Feng KM, Li X, Han Y, et al., 2021a. Joint beamforming optimization for reconfigurable intelligent surface-enabled MISO-OFDM systems. China Commun, 18(3):63-79.
[8]Feng KM, Li X, Han Y, et al., 2021b. Physical layer security enhancement exploiting intelligent reflecting surface. IEEE Commun Lett, 25(3):734-738.
[9]Gan X, Zhong CJ, Huang CW, et al., 2021. RIS-assisted multi-user MISO communications exploiting statistical CSI. IEEE Trans Commun, 69(10):6781-6792.
[10]Gan X, Zhong CJ, Huang CW, et al., 2022. Multiple RISs assisted cell-free networks with two-timescale CSI: performance analysis and system design. IEEE Trans Commun, 70(11):7696-7710.
[11]Huang CW, Zappone A, Alexandropoulos GC, et al., 2019. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun, 18(8):4157-4170.
[12]Huang CW, Yang ZH, Alexandropoulos GC, et al., 2021. Multi-hop RIS-empowered terahertz communications: a DRL-based hybrid beamforming design. IEEE J Sel Areas Commun, 39(6):1663-1677.
[13]Huang YW, Mei WD, Zhang R, 2022. Empowering base stations with co-site intelligent reflecting surfaces: user association, channel estimation and reflection optimization. IEEE Trans Commun, 70(7):4940-4955.
[14]Jiang LL, Li X, Matthaiou M, et al., 2023. Joint user scheduling and phase shift design for RIS assisted multi-cell MISO systems. IEEE Wirel Commun Lett, 12(3):431-435.
[15]Le QN, Nguyen VD, Dobre OA, et al., 2021. Energy efficiency maximization in RIS-aided cell-free network with limited backhaul. IEEE Commun Lett, 25(6):1974-1978.
[16]Liu JX, Xiong K, Lu Y, et al., 2020. Energy efficiency in secure IRS-aided SWIPT. IEEE Wirel Commun Lett, 9(11):1884-1888.
[17]Luo CH, Li X, Jin S, et al., 2021. Reconfigurable intelligent surface-assisted multi-cell MISO communication systems exploiting statistical CSI. IEEE Wirel Commun Lett, 10(10):2313-2317.
[18]Pan CH, Ren H, Wang KZ, et al., 2020. Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Trans Wirel Commun, 19(8):5218-5233.
[19]Sang J, Yuan YF, Tang WK, et al., 2022. Coverage enhancement by deploying RIS in 5G commercial mobile networks: field trials. IEEE Wirel Commun, early access.
[20]Sang J, Zhou MY, Lan JF, et al., 2023. Multi-scenario broadband channel measurement and modeling for sub-6 GHz RIS-assisted wireless communication systems. https://arxiv.org/abs/2305.07835
[21]Sun Y, Babu P, Palomar DP, 2017. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans Signal Process, 65(3):794-816.
[22]Tang WK, Li X, Dai JY, et al., 2019. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun, 16(5):46-61.
[23]Tang WK, Dai JY, Chen MZ, et al., 2020. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J Sel Areas Commun, 38(11):2683-2699.
[24]Tang WK, Chen MZ, Chen XY, et al., 2021. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans Wirel Commun, 20(1):421-439.
[25]Wang JH, Tang WK, Liang JC, et al., 2022. Reconfigurable intelligent surface: power consumption modeling and practical measurement validation. https://arxiv.org/abs/2211.00323
[26]Wang TQ, Fang F, Ding ZG, 2022. An SCA and relaxation based energy efficiency optimization for multi-user RIS-assisted NOMA networks. IEEE Trans Veh Technol, 71(6):6843-6847.
[27]You CS, Zheng BX, Zhang R, 2021. Wireless communication via double IRS: channel estimation and passive beamforming designs. IEEE Wirel Commun Lett, 10(2):431-435.
[28]You L, Xiong JY, Huang YF, et al., 2021. Reconfigurable intelligent surfaces-assisted multiuser MIMO uplink transmission with partial CSI. IEEE Trans Wirel Commun, 20(9):5613-5627.
[29]Zeng M, Bedeer E, Dobre OA, et al., 2021. Energy-efficient resource allocation for IRS-assisted multi-antenna uplink systems. IEEE Wirel Commun Lett, 10(6):1261-1265.
Open peer comments: Debate/Discuss/Question/Opinion
<1>