Full Text:   <898>

Summary:  <25>

Suppl. Mater.: 

CLC number: TP391

On-line Access: 2025-11-17

Received: 2025-01-27

Revision Accepted: 2025-11-18

Crosschecked: 2025-04-06

Cited: 0

Clicked: 679

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qingyuan GONG

https://orcid.org/0000-0001-7942-8752

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.1896-1912

http://doi.org/10.1631/FITEE.2500062


Prototypical clustered federated learning for heart rate prediction


Author(s):  Yongjie YIN, Hui RUAN, Yang CHEN, Jiong CHEN, Ziyue LI, Xiang SU, Yipeng ZHOU, Qingyuan GONG

Affiliation(s):  School of Computer Science, Fudan University, Shanghai 200438, China; more

Corresponding email(s):   gongqingyuan@fudan.edu.cn

Key Words:  Federated learning, Heart rate prediction, Prototypical contrastive learning


Yongjie YIN, Hui RUAN, Yang CHEN, Jiong CHEN, Ziyue LI, Xiang SU, Yipeng ZHOU, Qingyuan GONG. Prototypical clustered federated learning for heart rate prediction[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1896-1912.

@article{title="Prototypical clustered federated learning for heart rate prediction",
author="Yongjie YIN, Hui RUAN, Yang CHEN, Jiong CHEN, Ziyue LI, Xiang SU, Yipeng ZHOU, Qingyuan GONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="1896-1912",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500062"
}

%0 Journal Article
%T Prototypical clustered federated learning for heart rate prediction
%A Yongjie YIN
%A Hui RUAN
%A Yang CHEN
%A Jiong CHEN
%A Ziyue LI
%A Xiang SU
%A Yipeng ZHOU
%A Qingyuan GONG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 1896-1912
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500062

TY - JOUR
T1 - Prototypical clustered federated learning for heart rate prediction
A1 - Yongjie YIN
A1 - Hui RUAN
A1 - Yang CHEN
A1 - Jiong CHEN
A1 - Ziyue LI
A1 - Xiang SU
A1 - Yipeng ZHOU
A1 - Qingyuan GONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 1896
EP - 1912
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500062


Abstract: 
Predicting future heart rate (HR) not only helps in detecting abnormal heart rhythms but also provides timely support for downstream health monitoring services. Existing methods for HR prediction encounter challenges, especially concerning privacy protection and data heterogeneity. To address these challenges, this paper proposes a novel HR prediction framework, PCFedH, which leverages personalized federated learning and prototypical contrastive learning to achieve stable clustering results and more accurate predictions. PCFedH contains two core modules: a prototypical contrastive learning-based federated clustering module, which characterizes data heterogeneity and enhances HR representation to facilitate more effective clustering, and a two-phase soft clustered federated learning module, which enables personalized performance improvements for each local model based on stable clustering results. Experimental results on two real-world datasets demonstrate the superiority of our approach over state-of-the-art methods, achieving an average reduction of 3.1% in the mean squared error across both datasets. Additionally, we conduct comprehensive experiments to empirically validate the effectiveness of the key components in the proposed method. Among these, the personalization component is identified as the most crucial aspect of our design, indicating its substantial impact on overall performance.

面向心率预测的原型聚类联邦学习

殷勇杰1,阮辉1,陈阳1,陈炯2,黎子玥3,苏翔4,周义朋5,宫庆媛6
1复旦大学计算机科学技术学院,中国上海市,200438
2蔚来汽车,中国上海市,201805
3科隆大学信息系统系,德国科隆,50969
4赫尔辛基大学农业科学系,芬兰赫尔辛基,00014
5麦考瑞大学计算学院,澳大利亚悉尼,2109
6复旦大学智能复杂体系基础理论与关键技术实验室,中国上海市,200433
摘要:预测未来心率不仅有助于检测心律异常,也能为下游健康监测服务提供及时支持。现有心率预测方法在隐私保护和数据异构性方面面临挑战。为应对这些挑战,本文提出一种新颖的心率预测框架--PCFedH,该框架利用个性化联邦学习和原型对比学习,来实现稳定聚类效果与更精准的预测。PCFedH包含两个核心模块:一个基于原型对比学习的联邦聚类模块,通过刻画数据异构性并增强心率表征以获取更有效聚类;一个两阶段软聚类联邦学习模块,依托稳定聚类结果实现各本地模型的个性化性能提升。在两个真实数据集上的实验结果表明,本方法优于现有最先进技术,在两个数据集上均方误差平均降低3.1%。此外,进行了全面实验,以实证验证所提方法各关键组件的有效性。其中个性化组件被证实为整个设计中最关键部分,表明其对整体性能具有重大影响。

关键词:联邦学习;心率预测;原型对比学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alharbi A, Alosaimi W, Sahal R, et al., 2021. Real-time system prediction for heart rate using deep learning and stream processing platforms. Complexity, 2021:5535734.

[2]Brisimi TS, Chen RD, Mela T, et al., 2018. Federated learning of predictive models from federated electronic health records. Int J Med Inform, 112:59-67.

[3]Cai LX, Chen NY, Cao YZH, et al., 2023. FedCE: personalized federated learning method based on clustering ensembles. Proc 31st ACM Int Conf on Multimedia, p.1625-1633.

[4]Chen J, Jiang YN, Huang ZX, et al., 2021. Fine-grained detection of driver distraction based on neural architecture search. IEEE Trans Intell Transp Syst, 22(9):5783-5801.

[5]Fang L, Liu XL, Su X, et al., 2020. Bayesian inference federated learning for heart rate prediction. Proc 9th EAI Int Conf on Wireless Mobile Communication and Healthcare, p.116-130.

[6]Ghosh A, Chung J, Yin D, et al., 2022. An efficient framework for clustered federated learning. IEEE Trans Inform Theory, 68(12):8076-8091.

[7]Jain AK, Dubes RC, 1988. Algorithms for Clustering Data. Prentice-Hall, Inc., Saddle River, USA.

[8]Kingma DP, Ba LJ, 2015. Adam: a method for stochastic optimization. 3rd Int Conf on Learning Representations, p.1-15.

[9]Li JN, Zhou P, Xiong CM, et al., 2021. Prototypical contrastive learning of unsupervised representations. https://arxiv.org/abs/2005.04966

[10]Li T, Sahu AK, Zaheer M, et al., 2020. Federated optimization in heterogeneous networks. Proc Mach Learn Syst, 2:429-450.

[11]McMahan B, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf on Artificial Intelligence and Statistics, p.1273-1282.

[12]Mehrang S, Pietila J, Tolonen J, et al., 2017. Human activity recognition using a single optical heart rate monitoring wristband equipped with triaxial accelerometer. European Medical and Biological Engineering Conf, p.587-590.

[13]Mu XT, Shen YL, Cheng K, et al., 2023. FedProc: prototypical contrastive federated learning on non-IID data. Fut Gener Comp Syst, 143:93-104.

[14]Oyeleye M, Chen TH, Titarenko S, et al., 2022. A predictive analysis of heart rates using machine learning techniques. Int J Environ Res Public Health, 19(4):2417.

[15]Panwar M, Gautam A, Biswas D, et al., 2020. PP-net: a deep learning framework for PPG-based blood pressure and heart rate estimation. IEEE Sensors J, 20(17):10000-10011.

[16]Patel M, Lal SKL, Kavanagh D, et al., 2011. Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst Appl, 38(6):7235-7242.

[17]Patidar S, Pachori RB, Acharya UR, 2015. Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl-Based Syst, 82:1-10.

[18]Qi Z, Meng L, Chen ZT, et al., 2023. Cross-silo prototypical calibration for federated learning with non-IID data. Proc 31st ACM Int Conf on Multimedia, p.3099-3107.

[19]Rather AM, Agarwal A, Sastry VN, 2015. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Syst Appl, 42(6):3234-3241.

[20]Reiss A, Indlekofer I, Schmidt P, et al., 2019. Deep PPG: large-scale heart rate estimation with convolutional neural networks. Sensors, 19(14):3079.

[21]Ruan YC, Joe-Wong C, 2022. FedSoft: soft clustered federated learning with proximal local updating. Proc 36th AAAI Conf on Artificial Intelligence, p.8124-8131.

[22]Sattler F, Müller KR, Samek W, 2021. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans Neur Netw Learn Syst, 32(8):3710-3722.

[23]Staffini A, Svensson T, Chung UI, et al., 2022. Heart rate modeling and prediction using autoregressive models and deep learning. Sensors, 22(1):34.

[24]Taamneh S, Tsiamyrtzis P, Dcosta M, et al., 2017. A multimodal dataset for various forms of distracted driving. Sci Data, 4(1):170110.

[25]Tan AZ, Yu H, Cui LZ, et al., 2023. Towards personalized federated learning. IEEE Trans Neur Netw Learn Syst, 34(12):9587-9603.

[26]Tan Y, Long GD, Ma J, et al., 2022a. Federated learning from pre-trained models: a contrastive learning approach. Proc 36th Conf on Neural Information Processing System, p.19332-19344.

[27]Tan Y, Long GD, Liu L, et al., 2022b. FedProto: federated prototype learning across heterogeneous clients. Proc 36th AAAI Conf on Artificial Intelligence, p.8432-8440.

[28]van der Maaten L, Hinton G, 2008. Visualizing data using t-SNE. J Mach Learn Res, 9(86):2579-2605.

[29]Xu MA, Moreno A, Nagesh S, et al., 2022. PulseImpute: a novel benchmark task for pulsative physiological signal imputation. Proc 36th Conf on Neural Information Processing Systems, p.26874-26888.

[30]Yao HX, Tang XF, Wei H, et al., 2019. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. Proc 33rd AAAI Conf on Artificial Intelligence, p.5668-5675.

[31]Yaqoob MM, Nazir M, Khan MA, et al., 2023. Hybrid classifier-based federated learning in health service providers for cardiovascular disease prediction. Appl Sci, 13(3):1911.

[32]Yu ZT, Shen YM, Shi JG, et al., 2022. PhysFormer: facial video-based physiological measurement with temporal difference transformer. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4176-4186.

[33]Yue ZH, Wang YJ, Duan JY, et al., 2022. TS2Vec: towards universal representation of time series. Proc AAAI Conf on Artificial Intelligence, p.8980-8987.

[34]Zhang J, Hua Y, Wang H, et al., 2023. FedALA: adaptive local aggregation for personalized federated learning. Proc AAAI Conf on Artificial Intelligence, p.11237-11244.

[35]Zhu HY, Xu JJ, Liu SQ, et al., 2021. Federated learning on non-IID data: a survey. Neurocomputing, 465:371-390.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE