Full Text:   <238>

CLC number: TP391.41;V448.22

On-line Access: 2025-11-17

Received: 2025-03-29

Revision Accepted: 2025-11-18

Crosschecked: 2025-06-10

Cited: 0

Clicked: 424

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yang LIU

https://orcid.org/0009-0008-9253-2683

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.1913-1925

http://doi.org/10.1631/FITEE.2500193


Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel


Author(s):  Yang LIU, Huajian DENG, Hao WANG, Zhonghe JIN

Affiliation(s):  Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   12224002@zju.edu.cn, denghuajian@zju.edu.cn, roger@zju.edu.cn, jinzh@zju.edu.cn

Key Words:  Heterogeneous blur kernel estimation, Dynamic conditions, Regional image restoration, Multiplication extended Kalman filter, Gyro drift


Yang LIU, Huajian DENG, Hao WANG, Zhonghe JIN. Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1913-1925.

@article{title="Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel",
author="Yang LIU, Huajian DENG, Hao WANG, Zhonghe JIN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="1913-1925",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500193"
}

%0 Journal Article
%T Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel
%A Yang LIU
%A Huajian DENG
%A Hao WANG
%A Zhonghe JIN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 1913-1925
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500193

TY - JOUR
T1 - Multiplication extended Kalman filter-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel
A1 - Yang LIU
A1 - Huajian DENG
A1 - Hao WANG
A1 - Zhonghe JIN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 1913
EP - 1925
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500193


Abstract: 
Under dynamic conditions, the smearing effect of star spots on the image plane reduces centroid extraction accuracy, which has an impact on attitude estimation. To enhance the dynamic performance of the star sensor, we propose a multiplication extended Kalman filter (MEKF)-aided non-blind star image restoration algorithm based on the heterogeneous blur kernel. The proposed algorithm consists of three procedures. First, the MEKF is used to estimate the attitude and gyro drift to eliminate the measurement error of the star sensor and gyro drift. Second, the attitude predicted by MEKF is used, which provides initial conditions and accelerates the subsequent algorithm. Finally, a gyro-assisted heterogeneous blur kernel estimation algorithm is presented for restoring non-uniform and nonlinear motion-blurred star images. In contrast to existing dynamic star image deblurring algorithms, which focus mostly on image content, the proposed method emphasizes the cause of motion blur by fusing MEKF and a heterogeneous blur kernel. This leads to significantly enhanced robustness against noise and improved restoration accuracy. Simulation results demonstrate that the proposed method significantly outperforms existing techniques, improving centroid extraction accuracy by up to 59.64% and pointing accuracy across all axes by more than 78.94%.

基于异质模糊核的乘性扩展卡尔曼滤波辅助非盲星图像复原算法

刘洋1,2,3,邓华健1,王昊1,2,3,金仲和1,2,3
1浙江大学微小卫星研究中心,中国杭州市,310027
2浣江实验室,中国诸暨市,311899
3浙江省微纳卫星研究重点实验室,中国杭州市,310027
摘要:在动态条件下,星斑在成像平面上的模糊效应会降低质心提取精度,从而影响姿态估算。为提升星敏感器的动态性能,提出一种基于异质模糊核的乘性扩展卡尔曼滤波(MEKF)辅助非盲星图像复原算法。该算法包含3个步骤:首先,采用MEKF估计姿态和陀螺漂移,以消除星敏感器测量误差和陀螺漂移。其次,利用MEKF预测的姿态作为初始条件,加速后续算法运行。最后,提出一种陀螺辅助异质模糊核估计算法,用于恢复非均匀与非线性运动模糊的星图。与现有动态星像去模糊算法主要关注图像内容不同,本方法着眼于运动模糊的成因,融合MEKF和异质模糊核技术。这显著增强了对噪声的鲁棒性并提高了复原精度。仿真结果表明,该方法显著优于现有技术,将质心提取精度提升高达59.64%,并将各轴指向精度提高78.94%以上。

关键词:异质模糊核估计;动态环境;局部图像复原;乘性扩展卡尔曼滤波;陀螺漂移

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bright DS, Steel EB, 1987. Two-dimensional top hat filter for extracting spots and spheres from digital images. J Micros, 146(2):191-200.

[2]Fei X, Nan C, Zheng Y, et al., 2012. A novel approach based on MEMS-Gyro's data deep coupling for determining the centroid of star spot. Math Probl Eng, 2012(1):403584.

[3]Gong D, Yang J, Liu LQ, et al., 2017. From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2319-2328.

[4]Hou YX, Zhao RJ, Ma YB, et al., 2021. A real-time star tailing removal method based on fast blur kernel estimations. Math Probl Eng, 2021:8819277.

[5]Jiang J, Huang JN, Zhang GJ, 2017. An accelerated motion blurred star restoration based on single image. IEEE Sens J, 17(5):1306-1315.

[6]Lefferts EJ, Markley FL, Shuster MD, 1982. Kalman filtering for spacecraft attitude estimation. J Guid Contr Dyn, 5(5):417-429.

[7]Li AJ, Liu CS, Shen XF, 2013. An approach to star map simulation for star sensor considering the effect of image motion. Opt Photo J, 3(2B):108-111.

[8]Ma LH, Bernelli-Zazzera F, Jiang GW, et al., 2016. Region-confined restoration method for motion-blurred star image of the star sensor under dynamic conditions. Appl Opt, 55(17):4621-4631.

[9]Ma LH, Dai DK, Ni YM, 2025. How to improve the attitude accuracy of the star sensor under dynamic conditions: a review. Acta Astronaut, 233:42-54.

[10]Madyastha V, Ravindra V, Mallikarjunan S, et al., 2011. Extended Kalman filter vs. error state Kalman filter for aircraft attitude estimation. Proc AIAA Guidance, Navigation, and Control Conf, Article 6615.

[11]Markley FL, 2003. Attitude error representations for Kalman filtering. J Guid Contr Dyn, 26(2):311-317.

[12]Sola J, 2017. Quaternion kinematics for the error-state Kalman filter. https://arxiv.org/abs/1711.02508

[13]Spiller D, Curti F, 2022. A geometrical approach for the angular velocity determination using a star sensor. Acta Astronaut, 196:414-431.

[14]Sun T, Xing F, You Z, et al., 2013. Motion-blurred star acquisition method of the star tracker under high dynamic conditions. Opt Expr, 21(17):20096-20110.

[15]Sun T, Xing F, You Z, et al., 2014a. Deep coupling of star tracker and MEMS-Gyro data under highly dynamic and long exposure conditions. Meas Sci Technol, 25(8):085003.

[16]Sun T, Xing F, You Z, et al., 2014b. Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time. Opt Expr, 22(5):6009-6024.

[17]Tian CG, Hao N, He FH, 2025. T-ESKF: transformed error-state Kalman filter for consistent visual-inertial navigation. IEEE Robot Autom Lett, 10(2):1808-1815.

[18]Wang H, Wang ZY, Wang BD, et al., 2020. An artificial intelligence enhanced star identification algorithm. Front Inform Technol Electron Eng, 21(11):1661-1670.

[19]Wang KD, Zhang C, Li Y, et al., 2014. A new restoration algorithm for the smeared image of a SINS-aided star sensor. J Navig, 67(5):881-898.

[20]Wang SQ, Zhang SJ, Ning MF, et al., 2018. Motion blurred star image restoration based on MEMS gyroscope aid and blur kernel correction. Sensors, 18(8):2662.

[21]Yang L, Huajian D, Yuchen L, et al., 2025. Motion parameters estimation algorithm of star sensor based on Zernike moments under dynamic conditions. Meas Sci Technol, 36(5):055104.

[22]Yi JH, Ma YB, Zhu ZF, et al., 2023. A blurred star image restoration method based on gyroscope data and enhanced sparse model. Meas Sci Technol, 34(11):115105.

[23]Zamani M, Trumpf J, Mahony R, 2015. Nonlinear attitude filtering: a comparison study. https://arxiv.org/abs/1502.03990

[24]Zhang WN, Quan W, Guo L, 2012. Blurred star image processing for star sensors under dynamic conditions. Sensors, 12(5):6712-6726.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE