Full Text:   <333>

CLC number: TP301.6

On-line Access: 2026-01-09

Received: 2025-07-30

Revision Accepted: 2025-11-10

Crosschecked: 2026-01-11

Cited: 0

Clicked: 215

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tong GUO

https://orcid.org/0000-0001-7514-7742

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.12 P.2440-2454

http://doi.org/10.1631/FITEE.2500540


Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation


Author(s):  Ce YU, Xianbin CAO, Bo ZHANG, Wenbo DU, Tong GUO

Affiliation(s):  School of Electronic and Information Engineering, State Key Laboratory of CNS/ATM, Beihang University, Beijing 100191, China

Corresponding email(s):   yuce@csaa.org.cn, guotong1997@buaa.edu.cn

Key Words:  Task allocation, Genetic programming (GP), Hyperheuristic, Combinatorial optimization, Learn-to-optimize


Ce YU, Xianbin CAO, Bo ZHANG, Wenbo DU, Tong GUO. Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2440-2454.

@article{title="Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation",
author="Ce YU, Xianbin CAO, Bo ZHANG, Wenbo DU, Tong GUO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2440-2454",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500540"
}

%0 Journal Article
%T Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation
%A Ce YU
%A Xianbin CAO
%A Bo ZHANG
%A Wenbo DU
%A Tong GUO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2440-2454
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500540

TY - JOUR
T1 - Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation
A1 - Ce YU
A1 - Xianbin CAO
A1 - Bo ZHANG
A1 - Wenbo DU
A1 - Tong GUO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2440
EP - 2454
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500540


Abstract: 
Multi-aircraft task allocation (MATA) plays a vital role in improving mission efficiency under dynamic conditions. This paper proposes a novel coevolutionary genetic programming (CoGP) framework that automatically designs high-performance reactive heuristics for dynamic MATA problems. Unlike conventional single-tree genetic programming (GP) methods, CoGP jointly develops two interacting populations, i.e., task prioritizing heuristics and aircraft selection heuristics, to explicitly model the coupling between these two interdependent decision phases. A comprehensive terminal set is constructed to represent the dynamic states of aircraft and tasks, whereas a low-level heuristic template translates developed trees into executable allocation strategies. Extensive experiments on public benchmark instances simulating post-disaster emergency delivery demonstrate that CoGP achieves superior performance compared with state-of-the-art GP and heuristic methods, exhibiting strong adaptability, scalability, and real-time responsiveness in complex and dynamic rescue environments.

大规模动态多飞行器任务分配的协同进化遗传规划

余策,曹先彬,张博,杜文博,郭通
北京航空航天大学电子信息工程学院空地一体新航行系统技术全国重点实验室,中国北京市,100191
摘要:多飞行器任务分配(MATA)在动态条件下对提升任务效率发挥着关键作用。本文提出一种新型协同进化遗传规划(CoGP)框架,可自动设计适用于动态MATA问题的高性能反应性启发式算法。与传统单树遗传规划(GP)方法不同,CoGP协同发展两个交互种群—任务优先级排序和飞行器选择的启发式搜索,从而显式建模这两个相互依存决策阶段的耦合关系。通过构建全面的终端集以表示飞行器与任务的动态状态,并借助低级启发式模板将生成的树结构转化为可执行分配策略。在模拟灾后紧急救援的公开基准实例上开展的大规模实验表明,CoGP相较于最先进的遗传规划与启发式方法表现出卓越性能,在复杂动态救援环境中展现出强适应性、可扩展性及实时响应能力。

关键词:任务分配;遗传规划(GP);超启发式算法;组合优化;学习优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ardeh MA, Mei Y, Zhang MJ, 2022. Genetic programming with knowledge transfer and guided search for uncertain capacitated arc routing problem. IEEE Trans Evol Comput, 26(4):765-779.

[2]Chen J, Guo YQ, Qiu ZF, et al., 2022. Multiagent dynamic task assignment based on forest fire point model. IEEE Trans Autom Sci Eng, 19(2):833-849.

[3]Fan QL, Bi Y, Xue B, et al., 2024. A multi-tree genetic programming-based ensemble approach to image classification with limited training data [research frontier]. IEEE Comput Intell Mag, 19(4):47-62.

[4]Fortin FA, De Rainville FM, Gardner MA, et al., 2012. DEAP: evolutionary algorithms made easy. J Mach Learn Res, 13:2171-2175.

[5]Gao GQ, Xin B, 2019. A-STC: auction-based spanning tree coverage algorithm formotion planning of cooperative robots. Front Inform Technol Electron Eng, 20(1):18-31.

[6]Gao GQ, Mei Y, Xin B, et al., 2022. Automated coordination strategy design using genetic programming for dynamic multipoint dynamic aggregation. IEEE Trans Cybern, 52(12):13521-13535.

[7]Guo T, Jiang N, Li BY, et al., 2021. UAV navigation in high dynamic environments: a deep reinforcement learning approach. Chin J Aeronaut, 34(2):479-489.

[8]Guo T, Mei Y, Du WB, et al., 2025a. Emergency scheduling of aerial vehicles via graph neural neighborhood search. IEEE Trans Artif Intell, 6(7):1808-1822.

[9]Guo T, Mei Y, Zhang MJ, et al., 2025b. Enhanced evolution of parallel algorithm portfolio for vehicle routing problem via transfer optimization. IEEE Trans Evol Comput, early access.

[10]Guo T, Mei Y, Zhang MJ, et al., 2025c. Genetic programming with multi-fidelity surrogates for large-scale dynamic air traffic flow management. IEEE Trans Evol Comput, 29(6):2671-2685.

[11]Guo T, Mei Y, Zhang MJ, et al., 2025d. Learning-aided neighborhood search for vehicle routing problems. IEEE Trans Patt Anal Mach Intell, 47(7):5930-5944.

[12]Hou ZY, You T, Wang W, 2025. Seismic resilience assessment-informed UAV task allocation framework for post-earthquake survey. Int J Disaster Risk Reduct, 116:105160.

[13]Hu LP, Zhang JQ, Liang XL, et al., 2025. A prescribed-time distributed constrained negotiation allocation algorithm for UAV swarms. IEEE Trans Aerosp Electron Syst, 61(5):14961-14980.

[14]Jia QL, Xiao JP, Feroskhan M, 2024. Multitarget assignment under uncertain information through decision support systems. IEEE Trans Ind Inform, 20(8):10636-10646.

[15]Liao XC, Mei Y, Zhang MJ, 2025. GPLight+: a genetic programming method for learning symmetric traffic signal control policy. IEEE Trans Evol Comput, early access.

[16]Liu SY, Yi L, Xiong XR, et al., 2025. Explainable attention-based AAV target detection for search and rescue scenarios. IEEE Int Things J, 12(5):4922-4934.

[17]Liu YX, Mei Y, Zhang MJ, et al., 2020. A predictive-reactive approach with genetic programming and cooperative coevolution for the uncertain capacitated arc routing problem. Evol Comput, 28(2):289-316.

[18]Nguyen S, Zhang MJ, Johnston M, et al., 2013. A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans Evol Comput, 17(5):621-639.

[19]Nguyen S, Mei Y, Zhang MJ, 2017. Genetic programming for production scheduling: a survey with a unified framework. Complex Intell Syst, 3(1):41-66.

[20]Peng Q, Wu HS, Li N, et al., 2024. A dynamic task allocation method for unmanned aerial vehicle swarm based on wolf pack labor division model. IEEE Trans Emerg Top Comput Intell, 8(6):4075-4089.

[21]Ponda SS, Johnson LB, How JP, 2012. Distributed chance-constrained task allocation for autonomous multi-agent teams. American Control Conf, p.4528-4533.

[22]Recchiuto CT, Sgorbissa A, 2018. Post-disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches. J Field Robot, 35(4):459-490.

[23]Sengupta R, Nagi R, Sreenivas RS, 2024. Robust task allocations by distributing the risk among agents: theory and algorithms. IEEE Trans Autom Sci Eng, 22:6475-6491.

[24]Sun ZX, Mei Y, Zhang FF, et al., 2024. Multi-tree genetic programming hyper-heuristic for dynamic flexible workflow scheduling in multi-clouds. IEEE Trans Serv Comput, 17(5):2687-2703.

[25]van Steenbergen RM, van Heeswijk WJA, Mes MRK, 2025. The stochastic dynamic postdisaster inventory allocation problem with trucks and UAVs. Transp Sci, 59(2):360-390.

[26]Wang SL, Mei Y, Zhang MJ, et al., 2022. Genetic programming with niching for uncertain capacitated arc routing problem. IEEE Trans Evol Comput, 26(1):73-87.

[27]Wang SL, Mei Y, Zhang MJ, 2023. A multi-objective genetic programming algorithm with α dominance and archive for uncertain capacitated arc routing problem. IEEE Trans Evol Comput, 27(6):1633-1647.

[28]Xing JH, Guo T, Tong L, 2024. Reliable truck-drone routing with dynamic synchronization: a high-dimensional network programming approach. Transp Res Part C Emerg Technol, 165:104698.

[29]Xu M, Mei Y, Zhang FF, et al., 2024a. Genetic programming for dynamic flexible job shop scheduling: evolution with single individuals and ensembles. IEEE Trans Evol Comput, 28(6):1761-1775.

[30]Xu M, Mei Y, Zhang FF, et al., 2024b. Genetic programming and reinforcement learning on learning heuristics for dynamic scheduling: a preliminary comparison. IEEE Comput Intell Mag, 19(2):18-33.

[31]Yang F, Chakraborty N, 2020. Chance constrained simultaneous path planning and task assignment for multiple robots with stochastic path costs. IEEE Int Conf on Robotics and Automation, p.6661-6667.

[32]Yu YY, Tang QR, Jiang QC, et al., 2025. A deep reinforcement learning-assisted multimodal multiobjective bilevel optimization method for multirobot task allocation. IEEE Trans Evol Comput, 29(3):574-588.

[33]Zhang FF, Mei Y, Zhang MJ, 2018. Genetic programming with multi-tree representation for dynamic flexible job shop scheduling. 31st Australasian Joint Conf on Artificial Intelligence, p.472-484.

[34]Zhang FF, Mei Y, Nguyen S, et al., 2023. Multitask multiobjective genetic programming for automated scheduling heuristic learning in dynamic flexible job-shop scheduling. IEEE Trans Cybern, 53(7):4473-4486.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE