CLC number: O437.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 7
Clicked: 5306
EICHLER H.J., GAD G.M.A., KAMINSKII A.A., RHEE H.. Raman crystal lasers in the visible and near-infrared[J]. Journal of Zhejiang University Science A, 2003, 4(3): 241-253.
@article{title="Raman crystal lasers in the visible and near-infrared",
author="EICHLER H.J., GAD G.M.A., KAMINSKII A.A., RHEE H.",
journal="Journal of Zhejiang University Science A",
volume="4",
number="3",
pages="241-253",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0241"
}
%0 Journal Article
%T Raman crystal lasers in the visible and near-infrared
%A EICHLER H.J.
%A GAD G.M.A.
%A KAMINSKII A.A.
%A RHEE H.
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 3
%P 241-253
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0241
TY - JOUR
T1 - Raman crystal lasers in the visible and near-infrared
A1 - EICHLER H.J.
A1 - GAD G.M.A.
A1 - KAMINSKII A.A.
A1 - RHEE H.
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 3
SP - 241
EP - 253
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0241
Abstract: raman lasers based on potassium gadolinium tungstate and lead tungstate crystals pumped by a≍120 ps Nd: YAG laser at 1.064 μm were developed. High reflection mirrors for the stokes wavelength have been used to generate near-infrared and eye safe spectral region of 1.15-1.32 μm. Second harmonic generation of the generated raman lasers was observed. Eifficient multiple stokes and anti-stokes picosecond generation in 64 crystals have been shown to exhibit stimulated Raman scattering on about 700 lines covering the whole visible and near-infrared spectrum. All stimulated Raman scattering (SRS) wavelengths in the visible and near-infrared spectrum are identified and attributed to the SRS-active vibration modes of these crystals.
[1]Andrjunas, K., Vistchakas, Ju., Kabelka, V., Mochalov, I.V., Pavlyuk, A.A., Petrovskii, G.T. and Syrus, V., 1985. Stimulated Raman self-conversion of Nd3+ laser light in double tungstenate crystals. JETP Lett., 42: 333.
[2]Berenberg, V.A., Karpukhin, S.N. and Mochalov, I.V., 1987. Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal. Sov. J. Quant. Electron, 14:1849.
[3]Eremenko, A.S., Karpukhin, S.N. and Stepanov, A.I., 1980. Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals. Sov.J.Quantum Electron, 10:113.
[4]Findeisen, J., Eichler, H.J. and Kaminskii, A.A., 1999. Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible. IEEE J. Quant. Electron, 35:173.
[5]Findeisen, J., Eichler, H.J., Peuser, P., Kaminskii, A.A. and Hulliger, J., 2000. Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers. Appl. Phys. B, 70:159.
[6]Gad, G.M.A., Eichler, H.J. and Kaminskii, A.A., 2003. Highly efficient 1.3-μm second Stokes PbWO4 Raman lasers. Opt. Lett., 28:426.
[7]Grabtchikov, A.S., Kuzmin, A.N., Lisinetskii, V.A., Ryabtsev, G.I., Orlovich, V.A. and Demidovich, A.A., 2000. Stimulated Raman scattering in Nd: KGW laser with diode pumping. J. Alloys and Compounds, 300:300.
[8]Grabtchikov, A.S., Kuzmin, A.N, Lisinetskii, V.A., Orlovich, V.A., Demidovich, A.A., Yumashev, K.V., Kuleshov, N.V., Eichler, H.J. and Danailov, M.B., 2001. Passively Q-switched 1.35 μm diode pumped Nd: KGW laser with V: YAG saturable absorber. Optical Materials, 16:349.
[9]He, C. and Chyba, T.H., 1997. Solid-state barium nitrate Raman laser in the visible region. Opt. Commun., 135: 273.
[10]Kaminskii, A.A., Ustimenko, N.S., Gulin, A.V., Bagaev, S.N. and Pavlyuk, A.A.,1998. Raman parametric interactions in KGd(WO4)2 and KGd(WO4)2: Nd3+ monoclinic crystals: picosecond multicomponent Stokes and anti-Stokes emission and nanosecond stimulated Raman scattering self-conversion into eye-safe 1.5-μm wavelength range. Dokal. Russian Akad. Nauk, 359:179.
[11]Kaminskii, A.A., Eichler, H.J., Ueda, K., Klassen, N.V., Redkin, B.S., Li, L.E., Findeisen, J., Jaque, D., Garcia-Sole, J., Fernandez, J. and Balda, R., 1999. Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals. Appl. Opt., 38:4533.
[12]Kaminskii, A.A., McCray, C.L., Lee, H.R., Lee, S.W., Temple, D.A., Chyba, T.H., Marsh, W.D., Barnes, J.C., Annanenkov, A.N., Legun, V.D., Eichler, H.J., Gad, G.M.A. and Ueda, K., 2000. High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals. Opt. Comm., 183:277.
[13]Karpukhin, S.N. and Stepanov, A.I., 1986. Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3 and CaCO3 crystals. Sov. J.Quantum Electron., 16:1027.
[14]Orlovich, V.A., Kiefer, W., Apanasevich, P.A., Buj, A.A., Grabtchikov, A.S.,Kachinsky, A.V., Ermolenkov, V.V. and Kruglik, S.G.,2000. All-solid-state stimulated Raman scattering-based source of pulsed radiation tunable in 345-625 and 690-1250 nm ranges for spectroscopic applications. J.Raman Spectr., 31:851.
[15]Zverev, P.G., Basiev, T.T. and Prokhorov, A.M., 1999. Stimulated Raman scattering of laser radiation in Raman crystals. Opt. Materials., 11:335.
Open peer comments: Debate/Discuss/Question/Opinion
<1>