CLC number: TP391.72
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5214
SHI Hong-bing, TONG Ruo-feng, DONG Jin-xiang. Efficient volume preserving approach for skeleton-based implicit surfaces[J]. Journal of Zhejiang University Science A, 2003, 4(6): 637-642.
@article{title="Efficient volume preserving approach for skeleton-based implicit surfaces",
author="SHI Hong-bing, TONG Ruo-feng, DONG Jin-xiang",
journal="Journal of Zhejiang University Science A",
volume="4",
number="6",
pages="637-642",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0637"
}
%0 Journal Article
%T Efficient volume preserving approach for skeleton-based implicit surfaces
%A SHI Hong-bing
%A TONG Ruo-feng
%A DONG Jin-xiang
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 6
%P 637-642
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0637
TY - JOUR
T1 - Efficient volume preserving approach for skeleton-based implicit surfaces
A1 - SHI Hong-bing
A1 - TONG Ruo-feng
A1 - DONG Jin-xiang
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 6
SP - 637
EP - 642
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0637
Abstract: This paper presents an efficient way to preserve the volume of implicit surfaces generated by skeletons. Recursive subdivision is used to efficiently calculate the volume. The criterion for subdivision is obtained by using the property of density functions and treating different types of skeletons respectively to get accurate minimum and maximum distances from a cube to a skeleton. Compared with the criterion generated by other ways such as using traditional interval analysis, Affine Arithmetic, or Lipschitz condition, our approach is much better both in speed and accuracy.
[1]Aubert, F.and Bechmann, D., 1997.Volume-Preserving Space Deformation.Computer & Graphics, 21(5): 625-637.
[2]Comba, J.L.D.and Stolfi, J., 1993.Affine Arithmetic and its Applications to Computer Graphics.Proceedings of the VI Sibgrapi, p.9-18.
[3]Desbrun, M.and Gascuel, M.P., 1995.Animating Soft Substances with Implicit Surfaces.SIGGRAPH'95, p.287-290.
[4]Foster, N.and Metaxas, D., 1996.Realistic animation of liquids.Graphical Models and Image Processing, 58(5): 471-483.
[5]Fujita, T., Hirota, K.and Murakami, K., 1990.Representation of Splashing Water using metaball Model.FUJITSU, 41(2): 159-165.
[6]Galin, E.and Akkouche, S., 2000.Incremental Polygonization of Implicit Surfaces.Graphical Models, 62(1): 19-39.
[7]Hirota, G., Maheshwari, R.and Lin, M.C., 2000.Fast volume-preserving free-form deformation using multi-level optimization.CAD, 32(8/9): 499-512.
[8]Murta, A.and Miller, J., 1999.Modeling and Rendering Liquids in Motion.WSCG'99 Proceedings, p.194-201.
[9]O'Brien, J.F.and Hodgins, J.K., 1995.Dynamic Simulation of Splashing Fluids.Computer Animation '95, p.198-205.
[10]Rappoport, A., Sheffer, A.and Bercovier, M., 1996.Volume Preserving Free-Form Solids.IEEE Transactions on visualization and computer graphics, 2(1): 19-27.
[11]Sederberg, T.W.and Parry, S.R., 1986.Free-form deformation of solid geometric models.Computer Graphics, 20(4): 151-160.
[12]Snyder, J.M., 1992.Interval analysis for computer graphics.Computer Graphics, 26(2): 121-130.
[13]Yu, Y.J., Jung, H.Y.and Cho, H.G., 1999.A New Water Droplet Model Using Metaball in the Gravitational Field.Computer & Graphics,p.213-222.
Open peer comments: Debate/Discuss/Question/Opinion
<1>