Full Text:   <3817>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 1

Clicked: 7697

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.1 P.1-8

http://doi.org/10.1631/jzus.2005.A0001


Modelling of modern automotive petrol engine performance using Support Vector Machines


Author(s):  Chi-man Vong1, Pak-kin Wong2, Yi-ping Li1, Chon-meng Ho2

Affiliation(s):  1. Department of Computer and Information Science, University of Macau, P. O. Box 3001, Macau, China; more

Corresponding email(s):   fstpkw@umac.mo

Key Words:  Automotive petrol engines, ECU tune-up, Support Vector Machines (SVM)


Share this article to: More |Next Article >>>

VONG Chi-man, WONG Pak-kin, LI Yi-ping, HO Chon-meng. Modelling of modern automotive petrol engine performance using Support Vector Machines[J]. Journal of Zhejiang University Science A, 2005, 6(1): 1-8.

@article{title="Modelling of modern automotive petrol engine performance using Support Vector Machines",
author="VONG Chi-man, WONG Pak-kin, LI Yi-ping, HO Chon-meng",
journal="Journal of Zhejiang University Science A",
volume="6",
number="1",
pages="1-8",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0001"
}

%0 Journal Article
%T Modelling of modern automotive petrol engine performance using Support Vector Machines
%A VONG Chi-man
%A WONG Pak-kin
%A LI Yi-ping
%A HO Chon-meng
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 1
%P 1-8
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0001

TY - JOUR
T1 - Modelling of modern automotive petrol engine performance using Support Vector Machines
A1 - VONG Chi-man
A1 - WONG Pak-kin
A1 - LI Yi-ping
A1 - HO Chon-meng
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 1
SP - 1
EP - 8
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0001


Abstract: 
Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-and-error method and then the vehicle engine is run on the dynamometer to show the actual engine performance. Obviously the current practice involves a large amount of time and money, and then may even fail to tune up the engine optimally because a formal performance model of the engine has not been determined yet. With an emerging technique, support Vector Machines (SVM), the approximate performance model of a petrol vehicle engine can be determined by training the sample engine performance data acquired from the dynamometer. The number of dynamometer tests for an engine tune-up can therefore be reduced because the estimated engine performance model can replace the dynamometer tests to a certain extent. In this paper, the construction, validation and accuracy of the model are discussed. The study showed that the predicted results agree well with the actual test results. To illustrate the significance of the SVM methodology, the results were also compared with that regressed using multilayer feedforward neural networks.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bishop, C., 1995. Neural Networks for Pattern Recognition, Oxford University Press,:

[2] Borowiak, D., 1989. Model Discrimination for Nonlinear Regression Models, Marcel Dekker,:

[3] Brace, C., 1998. Prediction of Diesel Engine Exhaust Emission using Artificial Neural Networks. , IMechE Seminar S591, Neural Networks in Systems Design, U.K, :

[4] Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press,:

[5] Gunn, S., 1998. Support Vector Machines for Classification and Regression. , ISIS Technical Report ISIS-1-98. Image Speech & Intelligent Systems Research Group, University of Southampton, U.K, :

[6] Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, Prentice Hall,:

[7] Liu, Z.T., Fei, S.M., 2004. Study of CNG/diesel dual fuel engine’s emissions by means of RBF neural network. J Zhejiang Univ SCI, 5(8):960-965. 

[8] Perez-Ruixo, J., Perez-Cruz, F., Figueiras-Vidal, A., Artes-Rodriguez, A., Camps-Valls, G., Soria-Olivas, E., 2002. Cyclosporine concentration prediction using clustering and support vector regression. IEE Electronics Letters, 38:568-570. 

[9] Pyle, D., 1999. Data Preparation for Data Mining. , Morgan Kaufmann, :

[10] Ryan, T., 1996. Modern Regression Methods, Wiley-Inter- science,:

[11] Schlkopf, B., Smola, A., 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press,:

[12] Seber, G., Wild, C., 2003. Nonlinear Regression, New Edition, Wiley-Interscience,:

[13] Seeger, M., 2004. Gaussian processes for machine learning. International Journal of Neural Systems, 14(2):1-38. 

[14] Smola, A., Burges, C., Drucker, H., 1996. Regression Estimation with Support Vector Learning Machines. Available at. , (Available from: )http://www.first.gmd.de/ ~smola,:

[15] Su, S., Yan, Z., Yuan, G., 2002. A method for prediction in-cylinder compound combustion emissions. , J Zhejiang Univ SCI, 543-548. (5):543-548. 

[16] Suykens, J., Gestel, T., de Brabanter, J., 2002. Least Squares Support Vector Machines. , World Scientific, :

[17] Traver, M., Atkinson, R., Atkinson, C., 1999. Neural Network-based Diesel Engine Emissions Prediction Using In-Cylinder Combustion Pressure. , SAE Paper 1999-01-1532, :

[18] Yan, Z., Zhou, C., Su, S., 2003. Application of neural network in the study of combustion rate of neural gas/diesel dual fuel engine. , J Zhejiang Univ SCI, 170-174. (2):170-174. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE