CLC number: O343.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6518
XIONG Su-ming, NI Guang-zheng, HOU Peng-fei. The Reissner-Sagoci problem for transversely isotropic piezoelectric half-space[J]. Journal of Zhejiang University Science A, 2005, 6(9): 986-989.
@article{title="The Reissner-Sagoci problem for transversely isotropic piezoelectric half-space",
author="XIONG Su-ming, NI Guang-zheng, HOU Peng-fei",
journal="Journal of Zhejiang University Science A",
volume="6",
number="9",
pages="986-989",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0986"
}
%0 Journal Article
%T The Reissner-Sagoci problem for transversely isotropic piezoelectric half-space
%A XIONG Su-ming
%A NI Guang-zheng
%A HOU Peng-fei
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 9
%P 986-989
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0986
TY - JOUR
T1 - The Reissner-Sagoci problem for transversely isotropic piezoelectric half-space
A1 - XIONG Su-ming
A1 - NI Guang-zheng
A1 - HOU Peng-fei
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 9
SP - 986
EP - 989
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0986
Abstract: Based on the general solution of piezoelectric media and the extended cerruti solution for tangential point forces acted on the surface of transversely isotropic piezoelectric half-space (Ding and Chen, 2001), the electro-elastic fields in a transversely isotropic piezoelectric half-space caused by a circular flat bonded punch under torsion loading, which is called reissner-Sagoci problem, are evaluated by first evaluating the displacement functions within the contact region and then differentiating them. All the coupling electro-elastic fields are expressed by elementary functions and are convenient to be used. Numerical results are finally presented.
[1] Chen, W.Q., 1999. Inclined circular flat punch on a transversely isotropic piezoelectric half-space. Archive of Applied Mechanics, 69:455-464.
[2] Chen, W.Q., 2000. On piezoelastic contact problem for a smooth punch. Int. J. Solids Structures, 37:2331-2340.
[3] Chen, W.Q., Ding, H.J., 1999. Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mechanica Solida Sinica, 12:114-120.
[4] Chen, W.Q., Shioya, T., Ding, H.J., 1999. The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. ASME J. App. Mech., 66:764-771.
[5] Ding, H.J., Chen, W.Q., 2001. Three Dimensional Problems of Piezoelectricity. Nova Science Publishers, New York.
[6] Ding, H.J., Hou, P.F., Guo, F.L., 1999. Elastic and electric fields for elliptical contact for transversely isotropic piezoelectric bodies, ASME J. App. Mech., 66:560-562.
[7] Ding, H.J., Hou, P.F., Guo, F.L., 2000. The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids Structures, 37:3201-3229.
[8] Fabrikant, V.I., 1989. Applications of Potential Theory in Mechanics, Selection of New Results. Kluwer Academic Publishers, The Netherlands.
[9] Fabrikant, V.I., 1991. Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering. Kluwer Academic Publishers, The Netherlands.
[10] Fan, H., Sze, K.Y., Yang, W., 1996. Two-dimensional contact on a piezoelectric half-space, Int. J. Solids Structures, 33:1305-1315.
[11] Giannakopoulos, A.E., 2000. Strength analysis of spherical indentation of piezoelectric materials. ASME J. App. Mech., 67:409-416.
[12] Hanson, M.T., Puja, I.W., 1997. The Reissner-Sagoci Problem for the transversely isotropic half-space. ASME J. App. Mech., 64:692-694.
[13] Reissner, E., Sagoci, H.F., 1944. Forced torsional oscillations of an elastic half space. J. App. Physics, 15:652-654.
[14] Sneddon, I.N., 1947. Note on a boundary value problems of Reissner and Sagoci. J. App. Physics, 18:130-132.
[15] Sridhar, S., Giannakopoulos, A.E., Suresh, S., 2000. Mechanical and electrical responses of piezoelectric solids to conical indentation. J. App. Phys., 87:8451-8456.
Open peer comments: Debate/Discuss/Question/Opinion
<1>