Full Text:   <2402>

CLC number: TP361

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 2

Clicked: 4096

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.100 P.116-123

http://doi.org/10.1631/jzus.2005.AS0116


A class of quasi Bézier curves based on hyperbolic polynomials


Author(s):  SHEN Wan-qiang, WANG Guo-zhao

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   wq_shen@163.com

Key Words:  Bernstein basis, Bé, zier curve, Hyperbolic polynomials, Extended Tchebyshev system, B-base


SHEN Wan-qiang, WANG Guo-zhao. A class of quasi Bézier curves based on hyperbolic polynomials[J]. Journal of Zhejiang University Science A, 2005, 6(100): 116-123.

@article{title="A class of quasi Bézier curves based on hyperbolic polynomials",
author="SHEN Wan-qiang, WANG Guo-zhao",
journal="Journal of Zhejiang University Science A",
volume="6",
number="100",
pages="116-123",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.AS0116"
}

%0 Journal Article
%T A class of quasi Bézier curves based on hyperbolic polynomials
%A SHEN Wan-qiang
%A WANG Guo-zhao
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 100
%P 116-123
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.AS0116

TY - JOUR
T1 - A class of quasi Bézier curves based on hyperbolic polynomials
A1 - SHEN Wan-qiang
A1 - WANG Guo-zhao
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 100
SP - 116
EP - 123
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.AS0116


Abstract: 
This paper presents a basis for the space of hyperbolic polynomials Γm=span{1, sht, cht, sh2t, ch2t, …, shmt, chmt} on the interval [0,α] from an extended Tchebyshev system, which is analogous to the bernstein basis for the space of polynomial used as a kind of well-known tool for free-form curves and surfaces in Computer Aided Geometry Design. Then from this basis, we construct quasi ;zier curves and discuss some of their properties. At last, we give an example and extend the range of the parameter variable t to arbitrary close interval [r, s] (r<s).

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Carnicer, J.M., Peña, J.M., 1994. Totally positive bases for shape preserving curve design and optimality of B-splines. Computer Aided Geometric Design, 11:635-656.

[2] Chen, Q.Y., Wang, G.Z., 2003. A class of B

[3] L

[4] Peña, J.M., 1997. Shape preserving representations for trigonometric polynomial curves. Computer Aided Geometric Design, 14:5-11.

[5] Sânchez-Reyes, J., 1998. Harmonic rational B

[6] Schumaker, L.L., 1981. Spline Functions: Basic Theory. Wiley-Interscience, New York, p.363-419.

[7] Zhang, J.W., 1996. C-curves: An extension of cubic curves. Computer Aided Geometric Design, 13:199-217.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE