CLC number: TN919.8
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 4
Clicked: 5255
Baccichet Pierpaolo, Rane Shantanu, Girod Bernd. Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering[J]. Journal of Zhejiang University Science A, 2006, 7(5): 900-909.
@article{title="Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering",
author="Baccichet Pierpaolo, Rane Shantanu, Girod Bernd",
journal="Journal of Zhejiang University Science A",
volume="7",
number="5",
pages="900-909",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A0900"
}
%0 Journal Article
%T Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering
%A Baccichet Pierpaolo
%A Rane Shantanu
%A Girod Bernd
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 5
%P 900-909
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A0900
TY - JOUR
T1 - Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering
A1 - Baccichet Pierpaolo
A1 - Rane Shantanu
A1 - Girod Bernd
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 5
SP - 900
EP - 909
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A0900
Abstract: The authors propose a scheme for Systematic Lossy Error Protection (SLEP) of an H.264/AVC compressed video bit stream, using standard compatible features such as redundant slices, and flexible macroblock ordering. The systematic portion consists of a conventional H.264/AVC bit stream. For error resilience, an additional Wyner-Ziv bit stream is also transmitted. The Wyner-Ziv bit stream allows the decoding of a coarsely quantized description of the original video signal, and is efficiently generated by using H.264/AVC redundant slices in conjunction with Reed-Solomon coding. The Wyner-Ziv bit stream is decoded in order to recover the redundant video descriptions, which are used in lieu of portions lost from the original video signal due to channel errors. SLEP allows the video quality to degrade gracefully with worsening channel conditions, and provides a flexible trade-off between the achieved error resilience and the coarseness of the redundant description. The performance can be improved especially for low motion video sequences, by applying SLEP to a region-of-interest in the video frame, using flexible macroblock ordering (FMO). Experimental results provided for two video transmission scenarios, demonstrate the advantages of SLEP over forward error correction (FEC) as an error resilience scheme.
[1] Aaron, A., Rane, S., Girod, B., 2004. Wyner-Ziv Video Coding with Hash-based Motion Compensation at the Receiver. Proc. IEEE International Conference on Image Processing. Singapore.
[2] Baccichet, P., Chimienti, A., 2006. Forward Selective Protection Exploiting Redundant Slices and FMO in H.264/AVC. Proc. IEEE International Conference on Image Processing (ICIP 2006). Atlanta, USA.
[3] Girod, B., Aaron, A., Rane, S., Rebollo-Monedero, D., 2005. Distributed video coding. Proc. IEEE, Special Issue on Advances in Video Coding and Delivery, 93(1):71-83.
[4] Jagmohan, A., Sehgal, A., Ahuja, N., 2002. Predictive Encoding Using Coset Codes. Proc. IEEE International Conference on Image Processing. Rochester, NY, 2:29-32.
[5] JVT of ISO/IEC MPEG & ITU-T VCEG, 2003. Draft ITU-T recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264-ISO/IEC 14496/10 AVC—JVT-G050r1.doc).
[6] Puri, R., Ramchandran, K., 2002. PRISM: A New Robust Video Coding Architecture Based on Distributed Compression Principles. Proc. Allerton Conference on Communication, Control, and Computing. Allerton, IL.
[7] Rane, S., Girod, B., 2004. Analysis of Error-Resilient Video Transmission Based on Systematic Source-Channel Coding. Picture Coding Symposium (PCS 2004). San Francisco, CA.
[8] Rane, S., Aaron, A., Girod, B., 2004. Systematic Lossy Forward Error Protection for Error Resilient Digital Video Broadcasting—A Wyner-Ziv Coding Approach. Proc. IEEE International Conference on Image Processing. Singapore.
[9] Rane, S., Aaron, A., Girod, B., 2005a. Error Resilient Video Transmission Using Multiple Embedded Wyner-Ziv Descriptions. Proc. IEEE International Conference on Image Processing. Genoa, Italy.
[10] Rane, S., Baccichet, P., Girod, B., 2005b. Modeling and Optimization of a Systematic Lossy Error Protection System. Picture Coding Symposium (PCS 2006). Beijing, China.
[11] Shamai, S., Verd’u, S., Zamir, R., 1998. Systematic lossy source/channel coding. IEEE Trans. on Information Theory, 44(2):564-579.
[12] Stockhammer, T., Hannuksela, M., Wiegand, T., 2003. H.264/AVC in wireless environments. IEEE Trans. Circuits and Systems for Video Tech., Special Issue on the H.264/AVC Video Coding Standard, 13(7):657-673.
[13] Wang, Y., Hannuksela, M., Varsa, V., Hourunranta, A., Gabbouj, M., 2002. The Error Concealment Feature in the H.26L Test Model. Proc. IEEE ICIP.
[14] Wyner, A.D., Ziv, J., 1976. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. on Information Theory, IT-22(1):1-10.
Open peer comments: Debate/Discuss/Question/Opinion
<1>