Full Text:   <2371>

CLC number: TP273

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4289

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.101 P.223-227

http://doi.org/10.1631/jzus.2006.AS0223


Passive control of a class of chaotic dynamical systems with nonlinear observer


Author(s):  Qi Dong-Lian, Song Yun-Zhong

Affiliation(s):  School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   qidl@zju.edu.cn

Key Words:  Chaotic dynamical system, Passive theory, Nonlinear observer


Qi Dong-Lian, Song Yun-Zhong. Passive control of a class of chaotic dynamical systems with nonlinear observer[J]. Journal of Zhejiang University Science A, 2006, 7(101): 223-227.

@article{title="Passive control of a class of chaotic dynamical systems with nonlinear observer",
author="Qi Dong-Lian, Song Yun-Zhong",
journal="Journal of Zhejiang University Science A",
volume="7",
number="101",
pages="223-227",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.AS0223"
}

%0 Journal Article
%T Passive control of a class of chaotic dynamical systems with nonlinear observer
%A Qi Dong-Lian
%A Song Yun-Zhong
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 101
%P 223-227
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.AS0223

TY - JOUR
T1 - Passive control of a class of chaotic dynamical systems with nonlinear observer
A1 - Qi Dong-Lian
A1 - Song Yun-Zhong
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 101
SP - 223
EP - 227
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.AS0223


Abstract: 
A passive control strategy with nonlinear observer is proposed, which can be used to control a class of chaotic dynamical systems to stabilize at different equilibrium points. If the nonlinear function of chaotic system satisfies Lipschitz condition, the nonlinear observer can observe the state variables of the chaotic systems. An important property of passive system is studied to control chaotic systems, that is passive system can be asymptotically stabilized by state feedback controller whose state variables are presented by nonlinear observer. Simulation results indicated that the proposed chaos control method is very effective in a class of chaotic systems.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Byrnes, C.I., Isidori, A., 1991. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system. IEEE Trans. Automat. Contr., 36(11):1228-1240.

[2] Chen, G., Chen, G.R., 1999. Feedback control of unknown chaotic dynamical systems based on time-series data. IEEE Trans. Circu. Sys., 46(5):640-644.

[3] Femat, R., Alvarez-Ramirez, J., 1997. Synchronization of a class of strictly different chaotic oscillators. Physics Letters A, 236(4):307-313.

[4] Hill, D., Moylan, P., 1976. The stability of nonlinear dissipative system. IEEE Trans. Automat. Contr., 21(5):708-711.

[5] Li, G.F., Li, H.Y., Yang, C.W., 2005. Observer-based passive control for uncertain linear systems with delay in state and control input. Chinese Physics, 14(12):2379-2386.

[6] Lorenz, E.N., 1963. Deterministic non-periodic flows. J. Atmos. Sci., 20(2):130-141.

[7] Nam, H.J., Juwha, J., Jin, H.S., 1997. Generalized Luenberger-like Observer for Nonlinear Systems. Proceeding of the American Control Conference, p.2180-2183.

[8] Qi, D.L., Li, X.R., Zhao, G.Z., 2004. Passive control of hybrid chaotic dynamical systems. Journal of Zhejiang University (Engineering Science), 38(1):86-89 (in Chinese).

[9] Qi, D.L., Wang, J.J., Zhao, G.Z., 2005. Passive control of permanent magnet synchronous motor chaotic system. Journal of Zhejiang University SCIENCE, 6A(7): 728-732.

[10] Ott, E., Grebogi, C., York, J.A., 1990. Controlling chaos. Phys. Rev. Lett., 64(11):1196-1199.

[11] Wen, Y., 1999. Passive equivalence of chaos in Lorenz system. IEEE Transaction on Circuits and Systems—I: Fundamental Theory and Application, 46(7):876-878.

[12] Yang, L., Liu, Z., 1998. An improvement and proof of OGY method. App. Math. and Mech., 19(1):1-8.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE