CLC number: O343.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 9
Clicked: 6764
HUANG De-jin, DING Hao-jiang, CHEN Wei-qiu. Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load[J]. Journal of Zhejiang University Science A, 2007, 8(9): 1351-1355.
@article{title="Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load",
author="HUANG De-jin, DING Hao-jiang, CHEN Wei-qiu",
journal="Journal of Zhejiang University Science A",
volume="8",
number="9",
pages="1351-1355",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A1351"
}
%0 Journal Article
%T Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load
%A HUANG De-jin
%A DING Hao-jiang
%A CHEN Wei-qiu
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 9
%P 1351-1355
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A1351
TY - JOUR
T1 - Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load
A1 - HUANG De-jin
A1 - DING Hao-jiang
A1 - CHEN Wei-qiu
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 9
SP - 1351
EP - 1355
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A1351
Abstract: The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
[1] Almajid, A., Taya, M., Hudnut, S., 2001. Analysis of out-of-plane displacement and stress field in a piezo-composite plate with functionally graded microstructure. Int. J. Solids Struct., 38(19):3377-3391.
[2] Chen, W.Q., Ding, H.J., 2002. On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica, 153(3-4):207-216.
[3] Chen, W.Q., Bian, Z.G., Ding, H.J., 2001. Three-dimensional analysis of a thick FGM rectangular plate in thermal environment. Journal of Zhejiang University SCIENCE, 4(1):1-7.
[4] Chen, W.Q., Bian, Z.G., Lv, C.F., Ding, H.J., 2004. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Int. J. Solids Struct., 41(3-4):947-964.
[5] Ding, H.J., Chen, W.Q., Zhang, L.C., 2006. Elasticity of Transversely Isotropic Materials. Springer, Dordrecht.
[6] Ding, H.J., Huang, D.J., Chen, W.Q., 2007. Elasticity solutions for plane anisotropic functionally graded beams. Int. J. Solids Struct., 44(1):176-196.
[7] Huang, D.J., Ding, H.J., Chen, W.Q., 2007. Piezoelasticity solutions for functionally graded piezoelectric beams. Smart Mater. Struct., 16(3):687-695.
[8] Ootao, Y., Tanigawa, Y., 2000. Three-dimensional transient piezothermo-elasticity in functional graded rectangular plate bonded to a piezoelectric plate. Int. J. Solids Struct., 37(32):4377-4401.
[9] Sankar, B.V., 2001. An elasticity solution for functionally graded beams. Compos. Sci. Technol., 61(5):689-696.
[10] Sankar, B.V., Tzeng, J.T., 2002. Thermal stresses in functionally graded beams. AIAA J., 40:1228-1232.
[11] Wetherhold, R.C., Seelman, S., Wang, J.Z., 1996. The use of functionally graded materials to eliminate or control thermal deformation. Compos. Sci. Technol., 56(9):1099-1104.
[12] Wu, X.H., Chen, C.Q., Shen, Y.P., Tian, X.G., 2002. A high order theory for functionally graded piezoelectric shells. Int. J. Solids Struct., 39(20):5325-5344.
[13] Zhong, Z., Shang, E.T., 2005. Exact analysis of simply supported functionally graded piezothermoelectric plates. J. Intell. Mater. Sys. Struct., 16(7-8):643-651.
[14] Zhu, H., Sankar, B.V., 2004. A combined Fourier series-Galerkin method for the analysis of functionally graded beams. J. Appl. Mech.-Trans., ASME, 71(3):421-424.
Open peer comments: Debate/Discuss/Question/Opinion
<1>