CLC number: TK01
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 7
Clicked: 6357
Xiao-juan WU, Xin-jian ZHU, Guang-yi CAO, Heng-yong TU. SOFC temperature evaluation based on an adaptive fuzzy controller[J]. Journal of Zhejiang University Science A, 2008, 9(5): 688-694.
@article{title="SOFC temperature evaluation based on an adaptive fuzzy controller",
author="Xiao-juan WU, Xin-jian ZHU, Guang-yi CAO, Heng-yong TU",
journal="Journal of Zhejiang University Science A",
volume="9",
number="5",
pages="688-694",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071569"
}
%0 Journal Article
%T SOFC temperature evaluation based on an adaptive fuzzy controller
%A Xiao-juan WU
%A Xin-jian ZHU
%A Guang-yi CAO
%A Heng-yong TU
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 5
%P 688-694
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071569
TY - JOUR
T1 - SOFC temperature evaluation based on an adaptive fuzzy controller
A1 - Xiao-juan WU
A1 - Xin-jian ZHU
A1 - Guang-yi CAO
A1 - Heng-yong TU
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 5
SP - 688
EP - 694
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071569
Abstract: The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
[1] Aguiar, P., Adjiman, C., Brandon, N., 2005. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. II. Model-based dynamic performance and control. Journal of Power Sources, 147(1-2):136-147.
[2] Chang, Y.C., 2000. Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica, 36(10):1535-1545.
[3] Chang, Y.C., 2001. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches. IEEE Transaction on Fuzzy Systems, 9(2):278-292.
[4] Damm, D.L., Fedorov, A.G., 2006. Reduced-order transient thermal modeling for SOFC heating and cooling. Journal of Power Sources, 159(2):956-967.
[5] Gazi, V., Passino, K.M., 2000. Direct Adaptive Control Using Dynamic Structure Fuzzy Systems. Proceeding of the American Control Conference. Chicago, IL, p.1954-1958.
[6] Ivanov, P., 2007. Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane. Electrochimica Acta, 52(12):3921-3928.
[7] Kaneko, T., Brouwer, J., Samuelsen, G.S., 2006. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system. Journal of Power Sources, 160(1):316-325.
[8] Larrain, D., van Herle, J., Marechal, F., Favrat, D., 2003. Thermal modeling of a small anode supported solid oxide fuel cell. Journal of Power Sources, 118(1-2):367-374.
[9] Lin, Y., Beale, S.B., 2003. Numerical Simulations of the Performance of a Planar Solid-oxide Fuel Cell Stack. Proceedings CFD 2003, 11th Annual Conference of the CFD Society of Canada, Vancouver.
[10] Murshed, A.M., Huang, B., Nandakumar, K., 2007. Control relevant modeling of planer solid oxide fuel cell system. Journal of Power Sources, 163(2):830-845.
[11] Sanchez, D., Chacartegui, R., Munoz, A., Sanchez, T., 2006. Thermal and electrochemical model of internal reforming oxide fuel cells with tubular geometry. Journal of Power Sources, 160(2):1074-1087.
[12] Sastry, S., Bodson, M., 1989. Adaptive Control: Stability, Convergence and Robustness. Upper Saddle River, Prentice-Hall, NJ.
[13] Slotine, J.J, Li, W., 1991. Applied Nonlinear Control. Englewood Cliffs, Prentice-Hall, NJ.
[14] Stiller, C., Thorud, B., Seljebø, S., Mathisen, Ø., Karoliussen, H., Bolland, O., 2005. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of Power Sources, 141(2):227-240.
[15] Stiller, C., Thorud, B., Bolland, O., Kandepu, R., Imsland, L., 2006. Control strategy for a solid oxide fuel cell and gas turbine hybrid system. Journal of Power Sources, 158(1):303-315.
[16] Wang, L.X., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Upper Saddle River, Prentice-Hall, NJ.
[17] Xi, H., Sun. J., Tsourapas, V., 2007. A control oriented low order dynamic model for planar SOFC using minimum Gibbs free energy method. Journal of Power Sources, 165(1):253-266.
Open peer comments: Debate/Discuss/Question/Opinion
<1>