CLC number: TN911.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6065
Jian-ping ZHENG, Bao-ming BAI, Xin-mei WANG. Peak-power reduction by the lattice-reduction-aided closest point search for MIMO broadcast channels[J]. Journal of Zhejiang University Science A, 2008, 9(10): 1326-1330.
@article{title="Peak-power reduction by the lattice-reduction-aided closest point search for MIMO broadcast channels",
author="Jian-ping ZHENG, Bao-ming BAI, Xin-mei WANG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="10",
pages="1326-1330",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820174"
}
%0 Journal Article
%T Peak-power reduction by the lattice-reduction-aided closest point search for MIMO broadcast channels
%A Jian-ping ZHENG
%A Bao-ming BAI
%A Xin-mei WANG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 10
%P 1326-1330
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820174
TY - JOUR
T1 - Peak-power reduction by the lattice-reduction-aided closest point search for MIMO broadcast channels
A1 - Jian-ping ZHENG
A1 - Bao-ming BAI
A1 - Xin-mei WANG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 10
SP - 1326
EP - 1330
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820174
Abstract: In this letter, we present a modified vector-perturbation precoding scheme for the multiple-input multiple-output broadcast channel, where a perturbation vector is chosen to take into account both the instantaneous power and the instantaneous peak power of the transmitted signal. This perturbation vector is obtained by using the closest point search, with the aid of the lattice-reduction algorithm. Simulation results show that the proposed scheme yields a tradeoff among power efficiency, peak-to-average power ratio reduction, and complexity.
[1] Bennatan, A., Burshtein, D., Caire, G., Shamai, S., 2006. Superposition coding for side-information channels. IEEE Trans. on Inf. Theory, 52(5):1872-1889.
[2] Boccardi, F., Caire, G., 2006. The p-sphere encoder: peak-power reduction by lattice precoding for the MIMO Gaussian broadcast channel. IEEE Trans. on Commun., 54(11):2085-2091.
[3] Caire, G., Shamai, S., 2003. On the achievable throughout of a multi-antenna Gaussian broadcast channel. IEEE Trans. on Inf. Theory, 49(7):1691-1706.
[4] Costa, M., 1983. Writing on dirty paper. IEEE Trans. on Inf. Theory, 29(3):439-441.
[5] Damen, M.O., Gamal, H.E.L., Caire, G., 2003. On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans. on Inf. Theory, 49(10):2389-2402.
[6] Erez, U., Brink, S.T., 2005. A close-to-capacity dirty paper coding scheme. IEEE Trans. on Inf. Theory, 51(10):3417-3432.
[7] Erez, U., Shamai, S., Zamir, R., 2005. Capacity and lattice strategies for cancelling known interferences. IEEE Trans. on Inf. Theory, 51(11):3820-3833.
[8] Hochwald, B., Peel, C., Swindlehurst, A., 2005. A vector-perturbation technique for near-capacity multi-antenna multi-user communication-Part II: perturbation. IEEE Trans. on Commun., 53(3):537-544.
[9] Lenstra, A.K., Lenstra, H.W., Lovasz, L., 1982. Factoring polynomials with rational coefficients. Math. Ann., 261(4):515-534.
[10] Peel, C., Hochwald, B., Swindlehurst, A., 2005. A vector-perturbation technique for near-capacity multi-antenna multi-user communication-Part I: channel inversion and regularization. IEEE Trans. on Commun., 53(1):195-202.
[11] Spencer, Q.H., Swindlehurst, A.L., Haardt, M., 2004. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. on Signal Process., 52(2):461-471.
[12] Viswanath, P., Tse, D.N.C., 2003. Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality. IEEE Trans. on Inf. Theory, 49(8):1912-1921.
[13] Vishwanath, S., Jindal, N., Goldsmith, A., 2003. Duality, achievable rate, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. on Inf. Theory, 49(10):2658-2668.
[14] Weingarten, H., Steinberg, Y., Shamai, S., 2006. The capacity region of the Gaussian multiple-input multiple-output broadcast channels. IEEE Trans. on Inf. Theory, 52(9):3936-3964.
[15] Windpassinger, C.R., Fisher, F.H., Hube, J.B., 2004. Lattice-reduction-aided broadcast precoding. IEEE Trans. on Commun., 52(12):2057-2060.
[16] Yu, W., Cioffi, J.M., 2004. Sum capacity of Gaussian vector broadcast channels. IEEE Trans. on Inf. Theory, 50(9):1875-1892.
[17] Yu, W., Varodayan, D.P., Cioffi, J.M., 2005. Trellis and convolutional precoding for transmitter based interference presubtraction. IEEE Trans. on Commun., 53(7):1220-1230.
Open peer comments: Debate/Discuss/Question/Opinion
<1>