Full Text:   <5378>

Summary:  <1943>

CLC number: TN929.5

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-02-22

Cited: 0

Clicked: 7114

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tao Zhou

https://orcid.org/0000-0001-9908-255X

Jiayi Zhang

https://orcid.org/0000-0003-2434-4329

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.571-585

http://doi.org/10.1631/FITEE.2000509


Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection


Author(s):  Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang

Affiliation(s):  School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; more

Corresponding email(s):   taozhou@bjtu.edu.cn, 17120045@bjtu.edu.cn, chxwang@seu.edu.cn, jiayizhang@bjtu.edu.cn, liuliu@bjtu.edu.cn, liangyiqun@139.com

Key Words:  Millimeter-wave, Massive multiple-input multiple-output (MIMO), Mixed analog-to-digital converter, Performance analysis, Antenna selection


Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang. Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 571-585.

@article{title="Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection",
author="Tao Zhou, Guichao Chen, Cheng-xiang Wang, Jiayi Zhang, Liu Liu, Yiqun Liang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="571-585",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000509"
}

%0 Journal Article
%T Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection
%A Tao Zhou
%A Guichao Chen
%A Cheng-xiang Wang
%A Jiayi Zhang
%A Liu Liu
%A Yiqun Liang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 571-585
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000509

TY - JOUR
T1 - Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection
A1 - Tao Zhou
A1 - Guichao Chen
A1 - Cheng-xiang Wang
A1 - Jiayi Zhang
A1 - Liu Liu
A1 - Yiqun Liang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 571
EP - 585
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000509


Abstract: 
In this study, we consider a multi-cell millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) system with a mixed analog-to-digital converter (mixed-ADC) and hybrid beamforming architecture, in which antenna selection is applied to achieve intelligent assignment of high- and low-resolution ADCs. Both exact and approximate closed-form expressions for the uplink achievable rate are derived in the case of maximum-ratio combining reception. The impacts on the achievable rate of user transmit power, number of radio frequency chains at a base station, ratio of high-resolution ADCs, number of propagation paths, and number of quantization bits are analyzed. It is shown that the user transmit power can be scaled down inversely proportional to the number of antennas at the base station. We propose an efficient power allocation scheme by solving a complementary geometric programming problem. In addition, the energy efficiency is investigated, and an optimal tradeoff between the achievable rate and power consumption is discussed. Our results will provide a useful reference for the study of mixed-ADC multi-cell mmWave massive MIMO systems with antenna selection.

带有天线选择的混合精度ADC多小区大规模MIMO毫米波系统的性能分析和功率优化

周涛,陈贵潮,王承祥,章嘉懿,刘留,梁逸群
1北京交通大学电子信息工程学院,中国北京市,100044
2中国铁道科学研究院国家铁路智能运输系统工程技术研究中心,中国北京市,100081
3东南大学信息科学与工程学院移动通信国家实验室,中国南京市,210096
4紫金山实验室,中国南京市,211111
摘要:大规模MIMO和毫米波是5G的两个关键技术。其中大规模MIMO技术能充分挖掘空间资源,在不增加时频资源的情况下显著提高无线通信系统的频谱效率和能量效率;同时,毫米波频段由于具有大量的带宽资源受到了人们的青睐。这两个关键技术带来性能提升的同时也带来了一些问题。在大规模MIMO系统中,每个基站要配备上百根天线,同时也要配备与天线数量相对应的射频、ADC等硬件设施,导致基站的功耗和成本急剧增加。采用毫米波频段进行通信的问题是路径损耗大、穿透能力差等。本文针对大规模MIMO和毫米波存在的问题,提出一系列解决方法,为大规模MIMO和毫米波的实际应用提供了一定的理论基础。
在多小区大规模MIMO毫米波系统中,发送端和接收端均采用了模数混合波束成形技术以克服毫米波频段带来的路径损耗问题,并通过减少用户和基站端射频链的数量降低终端的成本和功耗。在发送端,本文考虑了一个通信小区和N个干扰小区,每个用户具有Nt根发送天线,但只有1根射频链;在接收端,基站具有Nr根天线为Nu个用户提供服务,同时,基站端配备了NRF根射频链和一个混合精度ADC架构。其中有NRF0根射频链连接高精度ADC,NRF1根射频链连接低精度ADC。此外,本文还考虑在基站端配备天线选择模块,该模块的作用是动态地选择出信道条件好的射频链并令其连接高精度ADC使有限的高精度ADC获得最大利用率。
通过严密的数学推导,得到了本文所研究系统上行可达速率的闭式表达式。速率计算结果表明:(1)在混合精度ADC架构下,无限增加用户的发送功率会使上行可达速率趋于一个定值;(2)采用全精度ADC替代混合精度ADC架构且基站端天线数目趋于无穷大,可达速率不会趋于无穷大,而会趋于一个与毫米波信号多径数目有关的定值;(3)当射频链和毫米波信号多径数目与基站端天线数目成正比,用户发送功率与基站端天线数目成反比且基站端天线数目趋于无穷大时,用户可达速率会趋于一个定值。此外,针对得出的闭式表达式以及不能通过简单增加发送功率以增强用户的可达速率等结论,本文提出了一种性能优化算法。该算法能够在发送功率一定的前提下,最大化系统的可达速率。
对计算得到的可达速率的闭式表达式进行仿真分析。首先通过闭式表达式与真实仿真结果的对比证明了本文所得到的闭式表达式的正确性。然后通过仿真结果证明了在基站端采用天线选择模块能显著提升系统的频谱效率。最后对系统的能量效率进行了计算与仿真,得出了系统能量效率随低精度ADC量化精度的变化趋势以及频谱效率和能量效率的最佳折中点。

关键词:毫米波;大规模多输入多输出;混合模拟-数字转换器;性能分析;天线选择

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abbas WB, Gomez-Cuba F, Zorzi M, 2017. Millimeter wave receiver efficiency: a comprehensive comparison of beamforming schemes with low resolution ADCs. IEEE Trans Wirel Commun, 16(12):8131-8146.

[2]Akdeniz MR, Liu YP, Samimi MK, et al., 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Area Commun, 32(6):1164-1179.

[3]Ayach OE, Heath RW, Abu-Surra S, et al., 2012. Low complexity precoding for large millimeter wave MIMO systems. IEEE Int Conf on Communications, p.3724-3729.

[4]Boccardi F, Heath RW, Lozano A, et al., 2014. Five disruptive technology directions for 5G. IEEE Commun Mag, 52(2):74-80.

[5]Busari SA, Huq KMS, Mumtaz S, et al., 2018. Millimeter-wave massive MIMO communication for future wireless systems: a survey. IEEE Commun Surv Tut, 20(2):836-869.

[6]Choi J, Evans BL, Gatherer A, 2017. Resolution-adaptive hybrid MIMO architectures for millimeter wave communications. IEEE Trans Signal Process, 65(23):6201-6216.

[7]Choi J, Sung J, Evans BL, et al., 2018. Antenna selection for large-scale MIMO systems with low-resolution ADCs. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3594-3598.

[8]Dai JX, Liu J, Wang JZ, et al., 2020. Asymptotic analysis of full-duplex large-scale MIMO systems with low-resolution ADCs/DACs over Rician fading channels. IEEE Syst J, 14(4):4832-4841.

[9]Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):436-453.

[10]Huang J, Wang CX, Feng R, et al., 2017. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J Sel Areas Commun, 35(7):1591-1605.

[11]Huang J, Wang CX, Liu Y, et al., 2018. A novel 3D GBSM for mmWave MIMO channels. Sci China Inform Sci, 61(10):102305.

[12]Li YZ, Tao C, Seco-Granados G, et al., 2017. Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans Signal Process, 65(15):4075-4089.

[13]Liang N, Zhang WY, 2016. Mixed-ADC massive MIMO. IEEE J Sel Areas Commun, 34(4):983-997.

[14]Liu Y, Wang CX, Huang J, et al., 2019. Novel 3-D nonstationary mmWave massive MIMO channel models for 5G high-speed train wireless communications. IEEE Trans Veh Technol, 68(3):2077-2086.

[15]Mollén C, Choi J, Larsson EG, et al., 2017. Uplink performance of wideband massive MIMO with one-bit ADCs. IEEE Trans Wirel Commun, 16(1):87-100.

[16]Orhan O, Erkip E, Rangan S, 2015. Low power analog-to-digital conversion in millimeter wave systems: impact of resolution and bandwidth on performance. Information Theory and Applications Workshop, p.191-198.

[17]Qiao D, Tan WQ, Zhao YY, et al., 2016. Spectral efficiency for massive MIMO zero-forcing receiver with low-resolution ADC. 8th Int Conf on Wireless Communications & Signal Processing, p.1-6.

[18]Rahimian S, Jing YD, Ardakani M, 2020. Performance analysis of massive MIMO multi-way relay networks with low-resolution ADCs. IEEE Trans Wirel Commun, 19(9):5794-5806.

[19]Tan WQ, Jin S, Wen CK, et al., 2016. Spectral efficiency of mixed-ADC receivers for massive MIMO systems. IEEE Access, 4:7841-7846.

[20]Venkateswaran V, van der Veen A J, 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans Signal Process, 58(8):4131-4143.

[21]Wang CX, Haider F, Gao XQ, et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 52(2):122-130.

[22]Xu JD, Xu W, Zhang H, et al., 2019. Performance analysis of multi-cell millimeter-wave massive MIMO networks with low-precision ADCs. IEEE Trans Commun, 67(1):302-317.

[23]You XH, Wang CX, Huang J, et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inform Sci, 64(1):110301.

[24]Yu XH, Shen JC, Zhang J, et al., 2016. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10(3):485-500.

[25]Zhang JY, Dai LL, He ZY, et al., 2017. Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE J Sel Areas Commun, 35(6):1327-1338.

[26]Zhang JY, Dai LL, He ZY, et al., 2019. Mixed-ADC/DAC multipair massive MIMO relaying systems: performance analysis and power optimization. IEEE Trans Commun, 67(1):140-153.

[27]Zhang MJ, Tan WQ, Gao JH, et al., 2018. Spectral efficiency and power allocation for mixed-ADC massive MIMO system. China Commun, 15(3):112-127.

[28]Zhang Q, Jin S, Wong KK, et al., 2014. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means. IEEE J Sel Top Signal Process, 8(5):966-981.

[29]Zhang Y, Cheng YL, Zhou M, et al., 2020. Analysis of uplink cell-free massive MIMO system with mixed-ADC/DAC receiver. IEEE Syst J, in press.

[30]Zhou T, Tao C, Salous S, et al., 2018. Measurements and analysis of angular characteristics and spatial correlation for high-speed railway channels. IEEE Trans Intell Transp Syst, 19(2):357-367.

[31]Zhou T, Yang Y, Liu L, et al., 2020a. A dynamic 3-D wideband GBSM for cooperative massive MIMO channels in intelligent high-speed railway communication systems. IEEE Tran Wirel Commun, in press.

[32]Zhou T, Tao C, Salous S, et al., 2020b. Geometry-based multi-link channel modeling for high-speed train communication networks. IEEE Trans Intell Transp Syst, 21(3):1229-1238.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE