CLC number: TU528.37
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-04-30
Cited: 5
Clicked: 6075
Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen. Micromechanics-based analysis for predicting asphalt concrete modulus[J]. Journal of Zhejiang University Science A, 2010, 11(6): 415-424.
@article{title="Micromechanics-based analysis for predicting asphalt concrete modulus",
author="Xing-yi Zhu, Zhi-yi Huang, Zhong-xuan Yang, Wei-qiu Chen",
journal="Journal of Zhejiang University Science A",
volume="11",
number="6",
pages="415-424",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0900645"
}
%0 Journal Article
%T Micromechanics-based analysis for predicting asphalt concrete modulus
%A Xing-yi Zhu
%A Zhi-yi Huang
%A Zhong-xuan Yang
%A Wei-qiu Chen
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 6
%P 415-424
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0900645
TY - JOUR
T1 - Micromechanics-based analysis for predicting asphalt concrete modulus
A1 - Xing-yi Zhu
A1 - Zhi-yi Huang
A1 - Zhong-xuan Yang
A1 - Wei-qiu Chen
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 6
SP - 415
EP - 424
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0900645
Abstract: The elastic modulus of asphalt concrete (AC) is an important material parameter for pavement design. The prediction and determination of elastic modulus, however, largely depends on laboratory tests which cannot reflect explicitly the influence of the microstructure of AC. To this end, a micromechanical model based on stepping scheme is adopted. Consideration is given to the influence of interfacial debonding and interlocking effect between the aggregates and asphalt mastic using the concept of effective bonding. Tests on asphalt mixture with various microstructures are conducted to verify the proposed approach. It is shown that the prediction is generally in agreement with experimental results. Parameters affecting the elastic modulus of AC are also discussed in light of the proposed method.
[1]AASHTO TP91-94, 2000. Standard Test Method for Determining the Resilient Modulus of Bituminous Mixtures by Indirect Tension. Annual Book of AASHTO Standards, Vol. 3.
[2]Al-Suhaibani, A., Sharaf, E., Al-Abdullatif, A., 1997. A model for asphalt concrete modulus prediction from basic mix variables in Saudi Arabia. Journal of King Saud University, Engineering Sciences, 9(1):1-12.
[3]Anderson, D.A., Goetz, W.H., 1973. Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Journal of Association Asphalt Paving Technologists, 42:37-66.
[4]Andrei, D., Witczak, M.W., Mirza, M.W., 1999. Development of a Revised Predictive Model for the Dynamic Modulus of Asphalt Mixtures. NCHRP 1-37A Inter Team Report, University of Maryland.
[5]ASTM D4123-82, 1998. Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures. Annual Book of ASTM Standards, Vol. 3.
[6]Barksdale, R.D., 1991. The Aggregate Handbook. National Stone Association, Washington DC.
[7]Buttlar, W.G., Roque, R., 1996. Evaluation of empirical and theoretical models to determine asphalt mixture stiffnesses at low temperature. Journal of Association Asphalt Paving Technologists, 65:99-141.
[8]Buttlar, W.G., Bozkurt, D., Al-Khateeb1, G.G., Waldhoff, A.S., 1999. Understanding asphalt mastic behavior through micromechanics. Journal of the Transportation Research Board, 1681(1):157-169.
[9]Christensen, D., Pellinen, T., Bonaquist, R., 2005. Hirsch model for estimating the modulus of asphalt concrete. Journal of Association Asphalt Paving Technologists, 72:97-121.
[10]Christensen, R.M., Lo, K.H., 1979. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27(4):315-330.
[11]Dongre, R., Myers, L., D’Anglo, J., Paugh, C., Gudimettla, J., 2005. Field evaluation of Witczak and Hirsch models for predicting dynamic modulus of hot-mix asphalt. Journal of Association Asphalt Paving Technologists, 74:381-442.
[12]Hashin, Z., 1962. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 29E:143-192.
[13]Huang, B.S., Li, G.Q., Mohammad, L.N., 2003. Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures. Composites Part B: Engineering, 34(8):705-714.
[14]Huang, B.S., Shu, X., Li, G.Q., Chen, L.S., 2007. Analytical modeling of three-layered HMA mixtures. International Journal of Geomechanics, 7(2):140-148.
[15]Li, G., Li, Y., Metcalf, J.B., Pang, S.S., 1999. Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering, 11(3):236-241.
[16]Li, Y.Q., Metcalf, J.B., 2005. Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. Journal of Materials in Civil Engineering, 17(4):407-415.
[17]Lytton, R., 1990. Materials Property Relationships for Modeling the Behavior of Asphalt Aggregate Mixtures in Pavements. Internal Memorandum Strategic Highway Research Program, Washington DC.
[18]Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571-574.
[19]Papanicolaou, G.C., Bakos, D., 1992. The influence of adhesion bond between matrix and filler on the tensile strength of particulate-filled polymers. Journal of Reinforced Plastics and Composites, 11(2):104-125.
[20]Paul, B., 1960. Prediction of elastic constants of multiphase material. ASME Transactions Journals, 218:36-48.
[21]Ranganath, S., 1997. A review of particulate-reinforced titanium matrix composite. Journal of Materials Science, 32(1):1-16.
[22]Shashidhar, N., Shenoy, A., 2002. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials, 34(10):657-669.
[23]Shu, X., Huang, B.S., 2008. Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures. Composites Part B: Engineering, 39(4):704-713.
[24]Shu, X., Huang, B.S., 2009. Predicting dynamic modulus of asphalt mixtures with differential method. Road Materials and Pavement Design, 10(2):337-359.
[25]Suhaibani, A., Sharaf, E., Abdullatif, A., 1997. A model for asphalt concrete modulus prediction from basic mix variables in Saudi Arabia. Journal of King Saud University: Engineering Sciences, 9(1):1-12.
[26]Tschegg, E.K., Macht, J., Jamek, M., Steigenberger, J., 2007. Mechanical and fracture-mechanical properties of asphalt-concrete interfaces. ACI Materials Journal, 104(5):474-480.
[27]Yang, Q.S., 2007. Stepping scheme for multi-inclusion problem. Acta Materials Compos Sinica, 24(6):128-134 (in Chinese).
[28]Zhu, H., Nodes, J., 2000. Contact based analysis of asphalt pavement with the effect of aggregate angularity. Mechanics of Materials, 32(3):193-202.
Open peer comments: Debate/Discuss/Question/Opinion
<1>