CLC number: TB559
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-03-01
Cited: 8
Clicked: 4752
Vladimir N. Khmelev, Andrey V. Shalunov, Roman V. Barsukov, Denis S. Abramenko, Andrey N. Lebedev. Studies of ultrasonic dehydration efficiency[J]. Journal of Zhejiang University Science A, 2011, 12(4): 247-254.
@article{title="Studies of ultrasonic dehydration efficiency",
author="Vladimir N. Khmelev, Andrey V. Shalunov, Roman V. Barsukov, Denis S. Abramenko, Andrey N. Lebedev",
journal="Journal of Zhejiang University Science A",
volume="12",
number="4",
pages="247-254",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000155"
}
%0 Journal Article
%T Studies of ultrasonic dehydration efficiency
%A Vladimir N. Khmelev
%A Andrey V. Shalunov
%A Roman V. Barsukov
%A Denis S. Abramenko
%A Andrey N. Lebedev
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 4
%P 247-254
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000155
TY - JOUR
T1 - Studies of ultrasonic dehydration efficiency
A1 - Vladimir N. Khmelev
A1 - Andrey V. Shalunov
A1 - Roman V. Barsukov
A1 - Denis S. Abramenko
A1 - Andrey N. Lebedev
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 4
SP - 247
EP - 254
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000155
Abstract: The aim of this investigation was to define the effectiveness of non-contact drying using ultrasonic vibrations. Disk radiators were used for carrying out experiments, and a special drying chamber was designed to provide resonant amplification of ultrasonic vibrations (from 130 to 150 dB). drying of ginseng and other vegetables demonstrated that the application of ultrasonic vibrations reduced power inputs by 20% in comparison with convective drying. It also led to a decrease of 6% in final moisture content, if the duration of drying was constant. The level of intensification of ultrasonic drying was high (up to 50 g for 1 kg of drying material), which helped to lower the temperature of the drying agent and improve the quality of the dried products.
[1]de la Fuente, S., Riera, E., Gallego-Juarez, J.A., 2004. Effect of Power Ultrasound on Mass Transfer in Food Processing. 18th International Congress on Acoustics, Kyoto, Japan.
[2]de la Fuente, S., Riera, E., Acosta-Aparicio, V.M., Blanco, A., Gallego-Juarez, J.A., 2006. Food drying process by power ultrasound. Ultrasonics, 44(S1):e523-e527.
[3]Gallego-Juarez, J.A., Riera, E., de la Fuente-Blanco, S., Rodriguez-Corral, G., Acosta-Aparicio, V.M., Blanco, A., 2007. Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25(11):1893-1901.
[4]Glaznev, V.N., 1997. The Device for Drying of Capillary-Porous Free-Flowing Materials. Patent of Russian Federation, No. 2095707 (in Russian).
[5]Khmelev, V.N., Genne, D.V., Bahirev, A.A., Savin, I.I., 2006. The Meter of the Level High-Intensity Ultrasonic Pressure. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.232-233.
[6]Khmelev, V.N., Levin, S.V., Tsyganok, S.N., Lebedev, A.N., 2007a. High Power Ultrasonic Oscillatory Systems. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.293-298.
[7]Khmelev, V.N., Leonov, G.V., Shalunov A.V., Tsyganok, S.N., Barsukov, R.V., 2007b. Ultrasonic Multifunctional and Specialized Equipment for Intensification of Technological Processes in Industry. Altai State Technical University Press, Barnaul, Russia (in Russian).
[8]Khmelev, V.N., Choo, K.M., Shalunov, A.V., Lee, H.J., Lebedev, A.N., Khmelev, M.V., 2008. Compact Ultrasonic Dryer for Capillary-Porous and Loose Materials. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU, p.295-299.
[9]Khmelev, V.N., Choo, K.M., Shalunov, A.V., Lebedev, A.N., Barsukov, R.V., Tsyganok, S.N., Shalunova, K.V., 2009a. Compact Ultrasonic Drier. International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, Novosibirsk, NSTU, p.277-282.
[10]Khmelev, V.N., Shalunov A.V., Barsukov R.V., Tsyganok, S.N., Lebedev, A.N., 2009b. Device for Ultrasonic Dryer. Patent of Russian Federation, No. 2367862 (in Russian).
[11]Khmelev, V.N., Tsyganok, S.N., Khmelev, S.S., Shalunov, A.V., Lebedev, A.N., Galahov, A.N., Shalunova, K.V., 2009c. Multifrequency Ultrasonic Transducer with Stepped-Plate Disk. International Conference and Seminar on Micro/Nanotechnologies and Electron Devices, Novosibirsk, NSTU, p.250-253.
[12]Lebedev, A.N., Shalunov, A.V., Khmelev, S.S., Kuchin, N.V., Shalunova, A.V., 2008. Ultrasonic Oscillating System for Radiators of Gas Media. International Workshops and Tutorials on Electron Devices and Materials, Novosibirsk, NSTU.
[13]Riera-Franco de Sarabia, E., Gallego-Juarez, J.A., Rodríguez-Corral, G., Acosta-Aparicio, V.M., Andrés-Gallegos, E., 2007. Application of High-Power Ultrasound for Drying Vegetables. 19th International Congress on Acoustic, Madrid, Spain.
[14]Rozenberg, L.D., 1973. Physical Principles of Ultrasonic Technology. Plenum Press, USA.
[15]Shalunov, A.V., Khmelev, V.N., Shalunova, A.V., 2009. Experimental Research of Efficiency Drying by Ultrasonic Vibrations High Intensity. All-Russian Scientific Conference on the Modern Problems of Tecnical Chemistry, Kazan, Russia, p.385-393 (in Russian).
Open peer comments: Debate/Discuss/Question/Opinion
<1>