CLC number: TM619; TN384
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-05-29
Cited: 17
Clicked: 6942
Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University Science A, 2012, 13(7): 526-537.
@article{title="An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system",
author="Hong-yan Wang, Xiao-biao Shan, Tao Xie",
journal="Journal of Zhejiang University Science A",
volume="13",
number="7",
pages="526-537",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100344"
}
%0 Journal Article
%T An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system
%A Hong-yan Wang
%A Xiao-biao Shan
%A Tao Xie
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 7
%P 526-537
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100344
TY - JOUR
T1 - An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system
A1 - Hong-yan Wang
A1 - Xiao-biao Shan
A1 - Tao Xie
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 7
SP - 526
EP - 537
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100344
Abstract: This paper presents a type of vibration energy harvester combining a piezoelectric cantilever and a single degree of freedom (SDOF) elastic system. The main function of the additional SDOF elastic system is to magnify vibration displacement of the piezoelectric cantilever to improve the power output. A mathematical model of the energy harvester is developed based on Hamilton’s principle and Rayleigh-Ritz method. Furthermore, the effects of the structural parameters of the SDOF elastic system on the electromechanical outputs of the energy harvester are analyzed numerically. The accuracy of the output performance in the numerical solution is identified from the finite element method (FEM). A good agreement is found between the numerical results and FEM results. The results show that the power output can be increased and the frequency bandwidth can be improved when the SDOF elastic system has a larger lumped mass and a smaller damping ratio. The numerical results also indicate that a matching load resistance under the short circuit resonance condition can obtain a higher current output, and so is more suitable for application to the piezoelectric energy harvester.
[1]Aldraihem, O., Baz, A., 2011. Energy harvester with dynamic magnifier. Journal of Intelligent Material Systems and Structures, 22(6):521-530.
[2]Arafa, M., Akl, W., Aladwani, A., Aldraihem, O., Baz, A., 2011. Experimental Implementation of a Cantilevered Piezoelectric Energy Harvester with a Dynamic Magnifier. Proceedings of SPIE, the International Society for Optical Engineering, 7977:79770Q.
[3]Auld, B.A., 1973. Acoustic Fields and Waves in Solids. Wiley, New York, p.357-382.
[4]Beeby, S.P., Tudor, M.J., White, N.M., 2006. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12):R175- R195.
[5]Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T., 2008. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 17(1):015035.
[6]Cornwell, P.J., Goethal, J., Kowko, J., Damianakis, M., 2005. Enhancing power harvesting using a tuned auxiliary structure. Journal of Intelligent Material Systems and Structures, 16(10):825-834.
[7]Dietl, J.M., Garcia, E., 2010. Beam shape optimization for power harvesting. Journal of Intelligent Material Systems and Structures, 21(6):633-646.
[8]du Toit, N., 2005. Modeling and Design of a MEMS Piezoelectric Vibration Energy Harvester. MS Thesis, Massachusetts Institute of Technology, USA.
[9]du Toit, N., Wardle, B.L., 2007. Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA Journal, 45(5):1126-1137.
[10]du Toit, N., Wardle, B.L., Kim, S.G., 2005. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71(1):121-160.
[11]Eichhorn, C., Goldschmidtboeing, F., Woias, P., 2009. Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam. Journal of Micromechanics and Microengineering, 19(9):094006.
[12]Erturk, A., Renno, J.M., Inman, D.J., 2009. Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures, 20(5):529-544.
[13]Hagood, N.W., Chung, W., Von Flotow, A., 1990. Modelling of piezoelectric actuator dynamics for active structural control. Journal of Intelligent Material Systems and Structures, 1(3):327-354.
[14]Hudak, N.S., Amatucci, G.G., 2008. Small-scale energy harvesting through thermoelectric, vibration, and radio frequency power conversion. Journal of Applied Physics, 103(10):101301.
[15]Kim, M., Hoegen, M., Dugundji, J., Wardle, B., 2010. Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Materials and Structures, 19(4):045023.
[16]Kong, N.A., Ha, D.S., Etrurk, A., Inman, D.J., 2010. Resistive impedance matching circuit for piezoelectric energy harvesting. Journal of Intelligent Material Systems and Structures, 21(13):1293-1302.
[17]Lee, S., Youn, B.D., Jung, B.C., 2009. Robust segment-type energy harvester and its application to a wireless sensor. Smart Materials and Structures, 18(9):095021.
[18]Liang, J., Liao, W.H., 2010. Impedance Matching for Improving Piezoelectric Energy Harvesting Systems. Proceedings of SPIE, the International Society for Optical Engineering, 7643:76430K.
[19]Liao, Y.B., Sodano, H.A., 2008. Model of a single mode energy harvester and properties for optimal power generation. Smart Materials and Structures, 17(6):065026.
[20]Ma, P.S., Kim, J.E., Kim, Y.Y., 2010. Power-Amplifying Strategy in Vibration-Powered Energy Harvesters. Proceedings of SPIE, the International Society for Optical Engineering, 7643:76430O.
[21]Mateu, L., Moll, F., 2005. Review of Energy Harvesting Techniques and Applications for Microelectronics. Proceedings of SPIE, the International Society for Optical Engineering, p.359-373.
[22]Mathuna, C.O., O’Donnell, T., Martinez-Catala, R.V., Rohan, J., O’Flynn, B., 2008. Energy scavenging for long-term deployable wireless sensor networks. Talanta, 75(3):613-623.
[23]Paradiso, J.A., Starner, T., 2005. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1):18-27.
[24]Pei, G., Li, Y.Z., Li, J., Ji, J., 2011. Performance evaluation of a micro turbo-expander for application in low-temperature solar electricity generation. Journal of Zhejiang University SCIENCE-A (Applied Physics and Engineering), 12(3):207-213.
[25]Renno, J.M., Daqaq, M.F., Inman, D.J., 2009. On the optimal energy harvesting from a vibration source. Journal of Sound and Vibration, 320(1-2):386-405.
[26]Sodano, H.A., Park, G., Inman, D.J., 2004. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 40(2):49-58.
[27]Stanton, S.C., McGehee, C.C., Mann, B.P., 2010. Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena, 239(10):640-653.
[28]Tadesse, Y., Zhang, S., Priya, S., 2009. Multimodal energy harvesting system: piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, 20(5):625-632.
[29]Tang, X.D., Zuo, L., 2011. Enhanced vibration energy harvesting using dual-mass systems. Journal of Sound and Vibration, 330(21):5199-5209.
[30]Ujihara, M., Carman, G.P., Lee, G.G., 2007. Thermal energy harvesting device using ferromagnetic materials. Applied Physics Letters, 91(9):093508.
[31]Wang, J.R., 1983. Underwater Acoustical Material Manual. Science Press, Beijing, China (in Chinese).
[32]Wu, W., Chen, Y., Lee, B., He, J., Peng, Y., 2006. Tunable Resonant Frequency Power Harvesting Devices. Proceedings of SPIE, the International Society for Optical Engineering, 6169:61690A.
[33]Xu, J.W., Shao, W.W., Kong, F.R., Feng, Z.H., 2010. Right- angle piezoelectric cantilever with improved energy harvesting efficiency. Applied Physics Letters, 96(15):152904.
[34]Xue, H., Hu, Y., Wang, Q., 2008. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(9):2104-2108.
[35]Yang, Z., Yang, J., 2009. Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric power harvester. Journal of Intelligent Material Systems and Structures, 20(5):569-574.
[36]Yuan, J.B., Xie, T., Shan, X.B., Chen, W.S., 2009. Resonant frequencies of a piezoelectric drum transducer. Journal of Zhejiang University SCIENCE-A, 10(9):1313-1319.
Open peer comments: Debate/Discuss/Question/Opinion
<1>