CLC number: TU352.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-12-18
Cited: 4
Clicked: 7078
Xiao Huang, Hong-ping Zhu. Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures[J]. Journal of Zhejiang University Science A, 2013, 14(1): 47-60.
@article{title="Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures",
author="Xiao Huang, Hong-ping Zhu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="1",
pages="47-60",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200181"
}
%0 Journal Article
%T Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures
%A Xiao Huang
%A Hong-ping Zhu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 47-60
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200181
TY - JOUR
T1 - Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures
A1 - Xiao Huang
A1 - Hong-ping Zhu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 47
EP - 60
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200181
Abstract: The optimal arrangement of viscoelastic dampers (VEDs) used to link two adjacent shear-type structures under seismic excitation was investigated. A two-step optimal design method is proposed. First, optimal parameter expressions of the Kelvin model are used to calculate the optimal stiffness and damping coefficient of the VEDs. Then, using the two-step optimal design method, taking the quadratic performance index as the optimization objective, the optimal arrangement of the dampers is determined. General rules about the optimal arrangement of the VEDs were obtained. The results show that the placement of only one damper between two adjacent shear-type structures should be avoided; if more than one damper is used, they should be distributed on the top and lower floors of the structures. Optimization of the number of dampers had little effect on response reduction. The most important factor was the optimization of the placement of the dampers. Through comparative study, for buildings of equal and unequal heights, the optimal parameters of dampers from parametric studies were shown to match the theoretical results for different numbers and placements of dampers. The level of response reduction was shown to be sensitive to the damping coefficient of the dampers.
Open peer comments: Debate/Discuss/Question/Opinion
<1>