Full Text:   <7900>

CLC number: O35

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-04-19

Cited: 26

Clicked: 11052

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.5 P.307-316

http://doi.org/10.1631/jzus.A1200208


Numerical study of the melting of nano-enhanced phase change material in a square cavity


Author(s):  Seyed Sahand Sebti1, Mohammad Mastiani1,3, Hooshyar Mirzaei1, Abdolrahman Dadvand1, Sina Kashani2, Seyed Amir Hosseini3

Affiliation(s):  1. Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran; more

Corresponding email(s):   M.Mastiani@yahoo.com

Key Words:  Nanofluid, Phase change material (PCM), Melting, Thermal energy storage, Square cavity


Share this article to: More |Next Article >>>

Seyed Sahand Sebti, Mohammad Mastiani, Hooshyar Mirzaei, Abdolrahman Dadvand, Sina Kashani, Seyed Amir Hosseini. Numerical study of the melting of nano-enhanced phase change material in a square cavity[J]. Journal of Zhejiang University Science A, 2013, 14(5): 307-316.

@article{title="Numerical study of the melting of nano-enhanced phase change material in a square cavity",
author="Seyed Sahand Sebti, Mohammad Mastiani, Hooshyar Mirzaei, Abdolrahman Dadvand, Sina Kashani, Seyed Amir Hosseini",
journal="Journal of Zhejiang University Science A",
volume="14",
number="5",
pages="307-316",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200208"
}

%0 Journal Article
%T Numerical study of the melting of nano-enhanced phase change material in a square cavity
%A Seyed Sahand Sebti
%A Mohammad Mastiani
%A Hooshyar Mirzaei
%A Abdolrahman Dadvand
%A Sina Kashani
%A Seyed Amir Hosseini
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 5
%P 307-316
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200208

TY - JOUR
T1 - Numerical study of the melting of nano-enhanced phase change material in a square cavity
A1 - Seyed Sahand Sebti
A1 - Mohammad Mastiani
A1 - Hooshyar Mirzaei
A1 - Abdolrahman Dadvand
A1 - Sina Kashani
A1 - Seyed Amir Hosseini
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 5
SP - 307
EP - 316
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200208


Abstract: 
A comprehensive numerical study was conducted to investigate heat transfer enhancement during the melting process in a 2D square cavity through dispersion of nanoparticles. A paraffin-based nanofluid containing various volume fractions of Cu was applied. The governing equations were solved on a non-uniform mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid-liquid interface. The effects of nanoparticle dispersion in a pure fluid and of some significant parameters, namely nanoparticle volume fraction, cavity size and hot wall temperature, on the fluid flow, heat transfer features and melting time were studied. The results are presented in terms of temperature and velocity profiles, streamlines, isotherms, moving interface position, solid fraction and dimensionless heat flux. The suspended nanoparticles caused an increase in thermal conductivity of nano-enhanced phase change material (NEPCM) compared to conventional PCM, resulting in heat transfer enhancement and a higher melting rate. In addition, the nanofluid heat transfer rate increased and the melting time decreased as the volume fraction of nanoparticles increased. The higher temperature difference between the melting temperature and the hot wall temperature expedited the melting process of NEPCM.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Arasu, A.V., Mujumdar, A.S., 2012. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. International Communications in Heat and Mass Transfer, 39(1):8-16. 


[2] Brent, A.D., Voller, V.R., Reid, K.J., 1988. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 13(3):297-318. 


[3] Cabeza, L.F., Casteii, A., Barreneche, C., de Gracia, A., Fernndez, A.I., 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3):1675-1695. 


[4] Choi, U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles.  Developments and Application of Non-Newtonian Flows. ASME,New York, USA :99-105. 

[5] Corcione, M., 2010. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. International Journal of Thermal Sciences, 49(9):1536-1546. 


[6] Darzi, A.R., Farhadi, M., Sedighi, K., 2012. Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling, 36(9):4080-4086. 


[7] Dutta, R., Atta, A., Dutta, T.K., 2008. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. The Canadian Journal of Chemical Engineering, 86(4):700-710. 


[8] Fang, X., Zhang, Z., Chen, Z., 2008. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Conversion and Management, 49(4):718-723. 


[9] Faraji, M., El Qarnia, H., 2010. Numerical study of melting in an enclosure with discrete protruding heat sources. Applied Mathematical Modelling, 34(5):1258-1275. 


[10] Gau, C., Viskanta, R., 1986. Melting and solidification of a pure metal on a vertical wall. Journal of Heat Transfer, 108(1):174-181. 


[11] Gong, Z.X., Mujumdar, A.S., 1996. Enhancement of energy charge-discharge rates in composite slabs of different phase change materials. International Journal of Heat and Mass Transfer, 39(4):725-733. 


[12] Ho, C.J., Chen, M.W., Li, Z.W., 2008. Numerical simulation of natural convection of nanofluid a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity. International Journal of Heat and Mass Transfer, 51(17-18):4506-4516. 


[13] Ho, C.J., Gao, J.Y., 2009. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. International Communications in Heat and Mass Transfer, 36(5):467-470. 


[14] Ho, C.J., Liu, W.K., Chang, Y.S., Lin, C.C., 2010. Numerical natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. International Journal of Thermal Sciences, 49(8):1345-1353. 


[15] Hosseinizadeh, S.F., Rabienataj Darzi, A.A., Tan, F.L., 2012. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. International Journal of Thermal Sciences, 51:77-83. 


[16] Kashani, S., Ranjbar, A.A., Abdollahzadeh, M., Sebti, S.S., 2012. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat and Mass Transfer, 48(7):1155-1166. 


[17] Khillarkar, D.B., Gong, Z.X., Mujumdar, A.S., 2000. Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Applied Thermal Engineering, 20(10):893-912. 


[18] Khodadadi, J.M., Hosseinizadeh, S.F., 2007. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer, 34(5):534-543. 


[19] Ng, K.W., Gong, Z.X., Mujumdar, A.S., 1998. Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. International Communications in Heat and Mass Transfer, 25(5):631-640. 


[20] Ranjbar, A.A., Kashani, S., Hosseinizadeh, S.F., Ghanbarpour, M., 2011. Numerical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material. Thermal Science, 15(1):169-181. 


[21] Sari, A., Karaipekli, A., 2009. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Solar Energy Materials and Solar Cells, 93(5):571-576. 


[22] Sebti, S.S., Khalilarya, S.H., Mirzaee, I., Hosseinizadeh, S.F., Kashani, S., Abdollahzadeh, M., 2011. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Applied Sciences Journal, 13(1):09-15. 

[23] Sharifi, N., Bergman, T.L., Faghri, A., 2011. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces. International Journal of Heat and Mass Transfer, 54(19-20):4182-4192. 


[24] Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2):318-345. 


[25] Shatikian, V., Ziskind, G., Letan, R., 2005. Numerical investigation of a PCM-based heat sink with internal fins. International Journal of Heat and Mass Transfer, 48(17):3689-3706. 


[26] Tan, F.L., Hosseinizadeh, S.F., Khodadadi, J.M., Fan, L., 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52(15-16):3464-3472. 


[27] Tay, N.H.S., Bruno, F., Belusko, M., 2012. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system. International Journal of Heat and Mass Transfer, 55(4):574-585. 


[28] Voller, V.R., Prakash, C., 1987. A fixed-grid numerical modeling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30(8):1709-1719. 


[29] Wang, N., Zhang, X.R., Zhu, D.S., Gao, J.W., 2012. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. Journal of Thermal Analysis and Calorimetry, 107(3):949-954. 


[30] Zalba, B., Marn, J.M., Cabeza, L.F., Mehling, H., 2003. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3):251-283. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE