Full Text:   <2830>

Summary:  <1816>

CLC number: O342

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-04-19

Cited: 1

Clicked: 5568

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.5 P.317-326

http://doi.org/10.1631/jzus.A1200280


Virtual internal thermal work evaluation in the multifield variational statements for the analysis of multilayered structures


Author(s):  Salvatore Brischetto

Affiliation(s):  . Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Corresponding email(s):   salvatore.brischetto@polito.it

Key Words:  Principle of virtual displacements (PVDs), Variational statements, Elasto-thermo-electric problems, Multilayered structures, Virtual internal elastic work, Virtual internal thermal work, Virtual internal electric work


Salvatore Brischetto. Virtual internal thermal work evaluation in the multifield variational statements for the analysis of multilayered structures[J]. Journal of Zhejiang University Science A, 2013, 14(5): 317-326.

@article{title="Virtual internal thermal work evaluation in the multifield variational statements for the analysis of multilayered structures",
author="Salvatore Brischetto",
journal="Journal of Zhejiang University Science A",
volume="14",
number="5",
pages="317-326",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200280"
}

%0 Journal Article
%T Virtual internal thermal work evaluation in the multifield variational statements for the analysis of multilayered structures
%A Salvatore Brischetto
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 5
%P 317-326
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200280

TY - JOUR
T1 - Virtual internal thermal work evaluation in the multifield variational statements for the analysis of multilayered structures
A1 - Salvatore Brischetto
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 5
SP - 317
EP - 326
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200280


Abstract: 
The principle of virtual displacements (PVDs) extended to elasto-thermo-electric problems includes virtual internal elastic, thermal and electric works. The governing equations have displacement vector, temperature and electric potential as primary variables of the problem, and the elasto-thermal, elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement. The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered (mechanical load, temperature or electric potential imposed and free vibration analysis). This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied. Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis, and they give an exhaustive explanation for several forms of the PVD proposed.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Aşkar Altay, G., Dkmeci, M.C., 1996. Fundamental variational equations of discontinuous thermopiezoelectric fields. International Journal of Engineering Science, 34(7):769-782. 


[2] Aşkar Altay, G., Dkmeci, M.C., 1996. Some variational principles for linear coupled thermoelasticity. International Journal of Solids and Structures, 33(26):3937-3948. 


[3] Brischetto, S., 2009. Effect of the through-the-thickness temperature distribution on the response of layered and composite shells. International Journal of Applied Mechanics, 1(4):581-605. 


[4] Brischetto, S., Carrera, E., 2010. Coupled thermo-mechanical analysis of one-layered and multilayered plates. Composite Structures, 92(8):1793-1812. 


[5] Brischetto, S., Carrera, E., 2010. Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells. Computer Modeling in Engineering and Science, 56(3):249-301. 


[6] Brischetto, S., Carrera, E., 2011. Thermomechanical effect in vibration analysis of one-layered and two-layered plates. International Journal of Applied Mechanics, 3(1):161-185. 


[7] Brischetto, S., Carrera, E., 2012. Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers. Journal of Thermal Stresses, 35(9):766-804. 


[8] Brischetto, S., Carrera, E., 2012. Free vibration analysis for layered shells accounting of variable kinematic and thermo-mechanical coupling. Shock and Vibration, 19(2):155-173. 


[9] Carrera, E., 2002. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9(2):87-140. 


[10] Carrera, E., Boscolo, M., Robaldo, A., 2007. Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures: formulation and numerical assessment. Archives of Computational Methods in Engineering, 14(4):383-430. 


[11] Cannarozzi, A.A., Ubertini, F., 2001. A mixed variational method for linear coupled thermoelastic analysis. International Journal of Solids and Structures, 38(4):717-739. 


[12] Chen, W.Q., Lee, K.Y., Ding, H.J., 2004. General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 42(13-14):1361-1379. 


[13] Liu, Y.H., Zhang, H.M., 2007. Variation principle of piezothermoelastic bodies, canonical equation and homogeneous equation. Applied Mathematics and Mechanics, 28(2):193-200. 


[14] Nowinski, J.L., 1978.  Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff,the Netherlands :

[15] Oh, J., Cho, M., Kim, J.S., 2007. Enhanced lower-order shear deformation theory for fully coupled electrothermomechanical smart laminated plates. Smart Materials and Structures, 16(6):2229-2241. 


[16] Prez-Fernndez, L.D., Bravo-Castillero, J., Rodrguez-Ramos, R., Sabina, F.J., 2009. On the constitutive relations and energy potentials of linear thermo-magneto-electro-elasticity. Mechanics Research Communications, 36(3):343-350. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE