CLC number: TV11
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-04-19
Cited: 3
Clicked: 6194
Qi-hua Ran, Zhi-nan Shi, Yue-ping Xu. Canonical correlation analysis of hydrological response and soil erosion under moving rainfall[J]. Journal of Zhejiang University Science A, 2013, 14(5): 353-361.
@article{title="Canonical correlation analysis of hydrological response and soil erosion under moving rainfall",
author="Qi-hua Ran, Zhi-nan Shi, Yue-ping Xu",
journal="Journal of Zhejiang University Science A",
volume="14",
number="5",
pages="353-361",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200306"
}
%0 Journal Article
%T Canonical correlation analysis of hydrological response and soil erosion under moving rainfall
%A Qi-hua Ran
%A Zhi-nan Shi
%A Yue-ping Xu
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 5
%P 353-361
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200306
TY - JOUR
T1 - Canonical correlation analysis of hydrological response and soil erosion under moving rainfall
A1 - Qi-hua Ran
A1 - Zhi-nan Shi
A1 - Yue-ping Xu
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 5
SP - 353
EP - 361
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200306
Abstract: The impacts of rainfall direction on the degree of hydrological response to rainfall properties were investigated using comparative rainfall-runoff experiments on a small-scale slope (4 m×1 m), as well as canonical correlation analysis (CCA). The results of the CCA, based on the observed data showed that, under conditions of both upstream and downstream rainfall movements, the hydrological process can be divided into instantaneous and cumulative responses, for which the driving forces are rainfall intensity and total rainfall, and coupling with splash erosion and wash erosion, respectively. The response of peak runoff (P
r) to intensity-dominated rainfall action appeared to be the most significant, and also runoff (R) to rainfall-dominated action, both for upstream- and downstream-moving conditions. Furthermore, the responses of sediment erosion in downstream-moving condition were more significant than those in upstream-moving condition. This study indicated that a CCA between rainfall and hydrological characteristics is effective for further exploring the rainfall-runoff-erosion mechanism under conditions of moving rainfall, especially for the downstream movement condition.
Open peer comments: Debate/Discuss/Question/Opinion
<1>