CLC number: TK172
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-05-16
Cited: 6
Clicked: 8448
Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv. Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system[J]. Journal of Zhejiang University Science A, 2013, 14(6): 417-426.
@article{title="Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system",
author="Yu-qi Huang, Rui Huang, Xiao-li Yu, Feng Lv",
journal="Journal of Zhejiang University Science A",
volume="14",
number="6",
pages="417-426",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300038"
}
%0 Journal Article
%T Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system
%A Yu-qi Huang
%A Rui Huang
%A Xiao-li Yu
%A Feng Lv
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 6
%P 417-426
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300038
TY - JOUR
T1 - Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system
A1 - Yu-qi Huang
A1 - Rui Huang
A1 - Xiao-li Yu
A1 - Feng Lv
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 6
SP - 417
EP - 426
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300038
Abstract: A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle’s energy consumption. heat exchangers, such as a charged air cooler (CAC), radiator, oil cooler, or condenser have different structures and can be arranged in various orders, and each combination may produce different effects because of interactions among them. In this study, we aimed to explore the principles governing interactions among adjacent heat exchangers in a cooling system, using numerical simulation and experimental technology. 3D models with different combinations were developed, compared, and analyzed comprehensively. A wind tunnel test platform was constructed to validate the computational results. We found that the heat dissipation of the modules was affected slightly by their relative position (the rules basically comply with the field synergy principle), but was independent of the modules’ spacing within a certain distance range. The heat dissipation of one module could be effectively improved by restructuring, but with a penalty of higher resistance. However, the negative effect on the downstream module was much less than expected. The results indicated that the intensity of heat transfer depends not only on the average temperature difference between cold and hot mediums, but also on the temperature distribution.
Open peer comments: Debate/Discuss/Question/Opinion
<1>